Category Archives: Ammunition

ammo, or ammunition category will be host to all topics related to factory ammo and ammunition. Everything from 22 LR to Bulk Pistol Ammo will be discussed here.

RELOADERS CORNER: The Value of Accuracy

Facebooktwittergoogle_pluspinterestyoutube

Can you take a focus on accuracy too far, or never far enough? Here are some thoughts on why better accuracy (really) matters…

Glen Zediker

dial indicator

Anyone who has ever read one of my books knows the extent of tickiness that can be involved in handloading. Competitive shooters also tend to get pretty wrapped up and sometimes entrenched hopelessly in technical rifle details. All these things we do are done in the hope of better accuracy: smaller shot groups.

Why bother with tickiness? Well, the answer (always) depends on the level of tickiness afoot and on the level of reward we get from it. No other answer makes any sense.

Accuracy always matters. If you do something different or new in the handloading process and see better shot groups, that no doubt was worth it. Ultimately, it was worth it. It might have been upgrading tools, experimenting with components, one or more case prep steps you hadn’t tried before. It’s still always a payback over the expense, time, and effort. But. It’s another level, attaining another level. It’s stepped up. I’ve compared all this to other endeavors where attaining that new level forever eclipses the old. But then there’s also the time and the effort. When I load ammunition, I consider its purpose. I do not turn case necks for ammo that’s going through my old SP1 on a Sunday afternoon of tin can hunting with my sons. For that, I’m interested in volume and function: the best way to load a lot of .223 Rem. with bulk-packed bullets and ball gunpowder, and with the fewest number of steps. We need a lot of ammo because we have eradicated entire species of discarded objects.

But, let’s for the rest of this assume that the sole purpose is the smallest group sizes we can get, day in and day out. That’s easier to talk about and make sense of, because, no doubt, there are factors that influence it, and I do know what they are.

I’ve always judged accuracy by group size. No shock. Most people do it thataway. I’m also way on more concerned with the worst group my combination shows me than I am the best group. Not everyone views that the same. When it gets down to it, though, I want to know what the worst shot I can anticipate might be because that information is very valuable in adjusting for the next shot. Now I’m talking about shooting for score in a tournament.

I picture a circle that outlines the group size I warrant for my rifle/ammo combination. For my own purpose of clarity, I call it “the accuracy cone.” This circle gets bigger the farther I’m shooting. Shots outside that circle need correction, shots inside that probably don’t. Yes, no, I don’t always launch a perfect shot. So honesty matters, objective evaluation of the shot break.

Group ilustration
You are always shooting a group! You might be aiming at one point but you’re shooting a group. The aiming point is really the center of the group. That’s a “zero,” by the way, or that’s how to zero, but this is straying beyond the levee here. This drawing is a representation of the importance of smaller group sizes. One of the biggest helps that great accuracy provides is that it’s clear when there’s need for sight correction, and when there isn’t. The smaller circle the ammo covers on a target face, the more defining sight corrections can be. If that’s not clear: A perfect shot break on a correct sight setting at 600 yards from a 1 MOA combination means that a shot 3 inches left, right, up, or down away from target center is still a “perfect” shot, even though the perforation point was imperfect. With a 1/4 MOA combination, we’re defining “perfect” with more certainty, because “imperfect” is anything outside 1 inch of target center. Follow? This isn’t just theory.

Mathematically-oriented people may tell you (and I understand this) that testing with 3-round groups provides accurate feedback of a round’s performance. It has to do with probabilities and such. However! I believe too much in luck, or as Buddy Dave calls it, “The Bullet Fairy.” Math-folk will further tell you that the more rounds fired the bigger the shot groupings will become. I’ve seen many instances where that wasn’t true, where the first two or three rounds defined the outer edge of what ultimately became a 10-shot group. I can’t argue with math, but I can argue with myself to the point that I want to see more rounds, and more groups, before I cook up a big batch of a component combination and call it good, or call it “match ammo.”

If you are a competitive shooter, better accuracy helps you get all the points you hold for. We can’t, any of us, ask for more than that. If you are a varmint hunter, it means a close miss may become a hit. The smaller the target the more it matters, or the smaller the goal area on a target is. Aim small, miss small. So let’s miss smaller… Examples can continue, and they might involve a trophy elk in New Mexico, or something even more important to stop in its tracks. It’s doesn’t really matter if the target is 10 feet away, or 10 yards, or 1000 yards, a more accurate firearm is a more effective tool. You can’t miss! Or you sure don’t want to.

accuracy cone
This equals that. Accuracy, on-target group size, is a “cone” that gets wider, expands across distance. A 1/2-inch 100 yard gun is not a 5-inch 1000 yard gun. It shoots bigger than that. However! A solid load-test group like this one David Tubb fired at 288 yards held up on down the pike at 1000. Tip: velocity consistency is a key to keeping a group together at extended distances.

LAST WORD
The value of accuracy is undeniable, but the value of time and effort and expense does indeed have a limit. No, I don’t do “everything” possible to my ammo to make it perfect. I have found a few things that really help, things that are reasonably (by my standards) good paybacks. Another tip: Get a good barrel! Honestly: that gets the most from whatever you do, or don’t do, to help the cause.

This article is adapted from Glen’s newest book, Top-Grade Ammo, available at Midsouth HERE. For more information on that and other books by Glen, visit ZedikerPublishing.com

RELOADERS CORNER: Common Problems

Facebooktwittergoogle_pluspinterestyoutube

As careful as we want to be, loading-bench mistakes are just about certain at some point. Here are 3 thoughts to help you avoid them, and also some ways to put a mistake behind you.

Glen Zediker

Standard Bullet Puller
Forster Standard Bullet Puller

This isn’t going to be a “troubleshooting” guide of epic proportions because following along with the suggested ops and processes, using the suggested tooling, there’s not a lot that can go worng. But sometimes even when everything is right, things can go awry. We all make mistakes. There may be a few confounding eventualities that will arise.

No case lube
You might forget or overlook putting lube on a case. Well. Lube each case, each time. Lube a case over each time it’s run through. Don’t think it hangs on. A stuck case remover is tool you don’t want to meet, and here’s to hoping you never see one. However, go ahead and buy one because it’s less embarrassing than borrowing one. Ha.

stuck case remover
Here’s to hoping you never see one of these… It’s a stuck case remover, and this is from Hornady. Folks, there’s a drill bit involved… Lube your cases!

“Ooopsie” on the propellant charge
Don’t do that. Check two or three times before calling a meter “set.” This was gone over thoroughly in another article. And read the load two or three times, and check your scale setting at least that many times as well. A mistake like that can be disastrous. Too little propellant can likewise create huge problems. Pay special attention to propellant supply level when using a meter, and even more attention when using a progressive press. Fortunately, loading most of the propellants wisely suitable for .223, .308, or most other popular rifle cartridges, it’s easy to notice a short charge. The propellant is, or should be, easily visible within the case neck. It’s a real issue with pistol loading: some of those propellants don’t reach halfway up the inside case walls.

bullet puller
There are different forms bullet-pullers take, and I prefer the slower but somewhat more “gentle” and likewise more secure collet-types. This is a Forster “Universal.” Bullet pullers grip the bullet in the jaws of a collet, which is tightened using a handle or nut, and then withdraw the case, dislodge the bullet. Simple. I do not like the “kinetic” pullers, which are essentially hammers that rely on intertia to dislodge a bullet after beating it a few times. They’re effective but daggone obnoxious in operation.

Triple-checking settings and notes
Same advice goes for indexing to any recorded setting. Powder meters, bullet seaters, anything. Just give it two sober checks before proceeding to shuck away. I’ve put the wrong setting on a bullet seater a few times… I learn all this the hard way, I freely admit, and here’s to hoping you can learn from me.

The wrong load
So what do you do if you realize there’s been a mistake made in a batch of ammunition? Of course, it depends on the mistake and what it might mean. If it’s not over-pressure, it’s probably best to just go ahead and shoot it up and reuse the cases. If it’s a bullet seated too deeply, same advice.

As long as safety is not a question, just shoot it. But there are times that’s not wisely possible.

Breaking down a loaded round requires removing the bullet. Of course, there are tools. Bullet pullers are tedious, as you might imagine. They also purport to allow for the reuse of bullets, but I sho don’t take that seriously. Removing a bullet, having already been seated, and then reseating it, there’s bound to be some compromise somewhere, or more, in the bullet integrity, accuracy at the least. The grip of the puller isn’t going to be benignly harmless either.

Before you pull a bullet, set it a little deeper. Makes this op on easier. Adjust the seating die down another five or ten thousandths. That breaks the “seal.”

Pay attention to what you are doing! For every moment you spend doing it. And write down what you did…

Check out choices at Midsouth HERE and HERE (bullet pullers and stuck case removers, and don’t forget to check HERE to avoid the last one)

ONE LAST…

sooty case neck
Soot means there wasn’t complete sealing there in firing. Don’t worry about the little ding you see here either. Just shoot it again.

Sooty cases. You might see sooty case necks and shoulders. That’s common, and that’s not really a problem. The reason is pressure, lack of it, that has then meant the case areas did not fully (fully) expand. Sometimes this is unavoidable. Just clean it off and use the case again. A little more: because it is necessary to create gaps between cartridge case and chamber wall, some leakage is just about a given. Excessive leakage, again, usually just means the load is a little on the lighter side. The combination of case and chamber also might mean it’s uavoidable. Thinner case neck walls (which means a little smaller net case neck outside diameter) in a more generous chamber might mean there won’t be idealized conformation to the chamber neck area. I see this often on case necks that have been full-circumference outside turned.

This article is adapted from Glen’s newest book, Top-Grade Ammo, available at Midsouth HERE. For more information on that and other books by Glen, visit ZedikerPublishing.com

AR15 Gas System Enhancements, Part 2

Facebooktwittergoogle_pluspinterestyoutube

Reducing the influence of excessive AR15 gas system pressure is most directly done reducing the pressure itself. Here’s how!

Glen Zediker

This is the second of two articles on ways to tame down an “over-functioning” AR15 gas system. Aside from running more reliably, reducing the evil influence of an overly-rapidly unlocking system improves cartridge case condition, which means longer case life. The first article talked about ways to increase the time the bolt stays locked, or delay its unlocking, however you want to see it.

Going more directly to the “source,” there are also ways to reduce the actual amount of gas that gets to the bolt carrier key and that’s up now for this one.

Adjustable gas block
Here’s an adjustable gas manifold. It’s a way to restrict the flow of gases through the system. Don’t get too greedy! Make sure to err on the side of function. These are probably the single most effective means to tame over-function. Check this one out HERE.

An adjustable gas manifold or “gas block” is an effective means to restrict the amount of gas that gets into the system. This device attaches at the port location, replacing the existing manifold (or front sight base if it’s a standard-configuration build) and will have some manner of valving function whereby propellant gases allowed to pass through the gas port in the barrel, through the manifold, and into and through the gas tube are restricted. Some incorporate a valve that regulates the passage dimension. Others provide a vent, more or less, to expel excess gas. I prefer the “valve-type” over the “bleed-off-style” devices.

Installation is straightforward, and these are available from a wide array of sources, so it shouldn’t be hard to find one that will fit even a custom-profile barrel. Standard for this area is 0.750-inches diameter. What matters is that the inside diameter of the manifold matches the outside diameter of the barrel at the connecting position.

There are different approaches to using this device but it’s really pretty simple. Figure out the minimum gas flow necessary to function the action and then open the flow-control screw adjustment a half turn more to give a little safety margin. Don’t get greedy. I shut one down all the way (minimum flow) and then open it up until the rifle functions.

The only foible on an adjustable manifold is that it has to fit in with the architecture of the setup you have. A retro-fit requires removing any muzzle device that might be installed and, of course, removing and later reinstalling the gas tube (make sure you check that it isn’t binding).

I have used other products that provide alternate means to do the same thing, like a gas tube with a valved adjustment mechanism. Sometimes something like that is best for anyone wanting to run a more standard gas manifold system. They work just fine, and dandy.

adjustable gas tube
There are other means for softening the system, and this adjustable gas tube is an example. Others include the “pig-tail” gas tubes that spiral around the barrel to increase tube length/volume. They all work…

Other gas tube modifications that work have been those formed in a spiral that wraps around the barrel, and I’ve seen tubes with expansion chambers (area of larger volume) along the span of the tube. What’s happening with these isn’t reducing the amount of gas, it’s just giving it more distance or room to weaken its presence.

The best solution I’ve yet encountered is fairly new and is an adjustable bolt carrier key. This requires no modification or labor about the barrel, and also works with virtually any AR15. Remove the old carrier key and replace it with the adjustable key.

adjustable carrier key
Here’s fairly new: an adjustable bolt carrier key from Sun Devil. David Beatty hit a long ball with this device, the ADIGS. I like it because it can be added to virtually any AR15 out there, even one that needs to maintain outwardly stock appearance. Works great. See more HERE.

A good while back I talked about gas port pressure and propellant burning rates and cautioned against using a propellant on the slower-burning side of “suitable propellant chart” center. To reiterate, I don’t think any propellant slower than Hodgdon 4895 should be used, but I know full well I can safely extend that range one more step to say something like Varget or RE15 is the limit. Slower propellants create more gas port pressure because they peak farther down the barrel, nearer the gas port location. Related: I recommend to anyone who’s going to do a longer custom barrel to request that the builder relocate the gas port another inch forward. There’s more gas contained in a longer barrel for a longer time: more pressure hits the carrier key as a result.

long gas tube
It’s common for an NRA High Power Rifle to get its gas port relocated forward another inch, or even two. The reason is because the 24-inch+ barrels we run “trap” more gas inside, which increases the pressure available at the gas port. The port farther forward gives more time and room (all the gas goes out when the bullet exits the muzzle).

No doubt, if you load up an AR15 with a heavy carrier and related parts then combine that with a gas restriction device, the range of propellants can move one or more steps slower-burning. In any of my full-blown across-the-course race guns, I can construct and successfully deploy loads that would wreck a rack-grade AR15. Don’t mess with that. Enjoy smoother and “softer” function and the assurance that you can run closer to a maximum load without fear of the odd and inevitable “pressure spike” causing problems. That’s why to do it.

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth, click HERE to order. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

Reloaders Corner: AR15 Gas System Enhancements, Part 1

Facebooktwittergoogle_pluspinterestyoutube

AR15s can have problems “over-functioning.” There are two essential ways to make your AR15 behave better! Here’s the first…

Glen Zediker

Right. I know this column is about handloading and reloading, so why am I spending space talking about gas system function? Well, it’s ammunition-related, or, at the least it is influenced by ammunition, and therefore also influences ammunition choices.

First, an AR15 gas system “over-functions” when it fills up too quickly and with too much burned propellant gas. The AR15 uses a “direct impingement” gas system, sometimes called an impulse system, and that means there’s a port hole in the barrel that lets gas out and through a gas tube, and this gas goes directly into the bolt carrier key and sends the whole works backwards. There’s no piston (although piston systems exist that can be fitted to these firearms) or other regulating device beyond gas port hole location and size.

AR15 bolt carriers
An M-16-profile carrier (back photo) weighs about 1 ounce more. Big big difference in slowing down initial movement. Get the right firing pin! If it’s a full-diameter carrier it will have a shrouded firing pin recess and takes a “large-collar” pin for correct operation.

The effect or upshot of over-function is overly quick bolt unlocking. The symptoms include extraction problems, damaged case rims (related), overly-blown cartridge case shoulders, excessive case head expansion, and, generally, accelerated wear on the action hisseff. As with many things, the severity of the excess function likewise increases excess in its manifestations.

What happens is that the case is swelled up under pressure inside the chamber, as it should be, but then it’s still swelled up when the bolt opens and the extractor takes a yank on the case rim to get it out of the chamber.

With respect to handloading ammunition, keeping the bolt in battery a tick longer makes a world of difference in spent case condition. The case has a tick more time to return to closer to normal dimensions and shrink away from the chamber walls. And time is, again, what this is really about. The case will be less stressed and dimensionally nearer original specs, and that means there’s “less” sizing done for next use, in effect. Case life improves and also does longer-term quality for reuse.

So. If we can delay bolt unlocking we’re seriously on to something. The simplest way to slow something down is make it heavier. Heavier things don’t accelerate as fast, they have a greater “moment of inertia,” less resistant to initial movement. Increasing bolt carrier mass is very effective. Keep in mind that what unlocks the bolt isn’t bolt movement, it’s bolt carrier movement. The bolt movement is a natural oucome to rearward travel of the carrier. Minor point but, well, there it is. I run “M-16 style” bolt carriers in all my AR15s. That’s a carrier with a full round section at the end rather than the notched out profile of the standard semi-auto carrier. And, no, an M-16 carrier won’t make a gun full-auto, and, as a matter of fact, carriers with the full-round profile are routinely encountered as “match” bolt carriers. Heavier is better!

Anything contacting the bolt carrier can increase in weight also and be effective. That effectively increases the load against the bolt carrier, and that requires more time to overcome and create movement. The buffer, for instance. I always run heavy buffers in my short guns, and also my hot-rod rifles for Across The Course use. The carbine-length stocks use a shorter spring and also a shorter buffer, and that means a lighter buffer.

AR15 buffers
Here’s an array of buffer components designed to slow the initial back-travel in the carrier. Anything helps, and more than one add-in makes an amazing difference in AR15 manners.

More about the spring’s role in all this next time, along with other more major modifications that will downright tame an AR15. And I’ll also run down a step-by-step on ensuring reliable function in a slowed-down AR15.

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

Reloaders Corner: Coated Bullets

Facebooktwittergoogle_pluspinterestyoutube

Bullet coatings promise better performance, but are they the right choice for you? Find out.


Glen Zediker


There are a few bullet coatings available, and Moly (MoS2: molybdenum-disulfide) is the best known, and also the most notorious. More in a bit.

moly coated bulets
Molybdenum Disulfide is the most popular bullet coating. It has exceedingly positive effects on performance, but there are may be some serious consequences for the uninformed user. Without correct (and frequent) cleaning, it can cause long-term damage to a barrel. Use it as outlined in this article and the extra speed and improved accuracy can pay back big to a serious shooter.

First, here’s how and why bullet coating works: Fire a coated bullet and a bare bullet using the same propellant charge. The coated bullet will go slower. However. The pressure will be lower. The reason is easy to figure: the increased lubrication reduces friction, resistance to movement, especially upon entry into the bore. It gets kind of a head start. The deal is that the pressure drops relatively more than the bullet speed, so, the bullet speed can be increased by adding more propellant and still have the same level of pressure. Win. Win. And, since there’s what amounts to a barrier between the bullet jacket and the barrel steel, the promise of more accurate rounds between cleanings is all true too. The bullet jacket isn’t leaving much of itself behind on the bore.

Among competitive shooters there was a huge shift toward coated bullets a few years back, but they’ve since fallen from favor for many. It wasn’t because they don’t perform well, because they do, but there are ancillary, and important, liabilities. Mostly: moly-coated bullets can corrode barrel steel, including stainless. Molybdenum disulfide outgases (outgas is the release of an occluded gas vapor that was part of the compound; a state change, pretty much) at temperatures lower than firing temperatures, and that creates a residue that, when mixed with water (moisture from condensation included, like what happens after firing), is pretty much sulfuric acid. Yikes. Right. If a moly-coated barrel is cleaned (correctly) each use, no problems. But one of the big draws is the potential to get literally hundreds of rounds, on zero, before the barrel needed cleaning. After a conventional cleaning (solvent and brush) it also takes time, which is rounds through the barrel, before zero will return.

I am a fan of coated bullets, and they’ve convincingly demonstrated their superiority to me after many thousands of rounds reaping rewards from the ballistic advantages. The improvement can be significant, and some bullets in particular escalate in performance more than others. Shorter bearing surface designs, by my notes, get that much more additional speed with no pressure trade-offs. Coating seems to have a disproportionately positive effect on thinner-skinned bullets, for reasons that likewise are clear. The effect here is smaller group sizes. Anything with a “J4” jacket responds well to coating (common in custom bullets).

My solution to the worries about moly was, as suggested, simply to clean the barrel each time back from the range and, also, to change my cleaning method to better accommodate the residue composition. More in a bit.

I don’t use moly any more, though. I’ve switched to Boron Nitride (BN) because it has all the advantages with none of the drawbacks, so far. BN is virtually the same in its effects as moly, based on my notes (same level of velocity drop and subsequent future increase). It’s easy to apply using a vibratory-style case cleaner.

BN coated bullet
This is a Boron-Nitride-coated bullet (right) compared to a bare bullet. BN is clear, slick, and doesn’t cause the chemical reactions other coatings are notorious for. It’s what I use.

I do not recommend any sort of lubrication inside a barrel, not for a promise of increased bullet performance. PFTE, for instance, has been touted as a great “break-in” agent for a barrel. Some use it after each cleaning to prep a barrel. Well. When it outgases, and it does outgas, it releases fluorine, a very powerful eater of all things metal.

Cleaning: Don’t use copper solvent with moly! The ingredients don’t mix well. Use only petroleum-based solvent. I switched to Kroil pentrating oil in conjuction with something like USP Bore Paste, JB Bore Compound, or similar (abrasive paste-type formulations). No room here now to convince anyone that abrasives are a safe and wise choice, but used correctly they are both. “Correctly” means a rod guide, stainless-steel rod, and keeping the rod shaft clean each pass. With that combination the bore is being protected against corrosion and the residues get gone, and, of huge importance, zero returns right away.

moly coated barrel cleaning
Bullet coating leaves an entirely different residue that conventional cleaners might not be effective on, and there’s also some chemistry involved that can inadvertently create big problems. I’ve had best results, all around, with a combination of micro-penetrating oil and abrasive paste. Keep the rod clean and feed it through a rod guide using abrasives and there’ll be no damage done.

Last on this: Just in the same as how I do not recommend “mixing” bullets or propellants through the same barrel, same day, coatings are pretty much the same. Zero will, not can, change for the number of rounds it takes to “re-season” the barrel. If you use it, use it.

I’ve seen great gaps in the quality of coated bullet finishes. Factory-coated bullets are the way to go. It’s tough to get a good job at home, and the reason is the carnuba wax application is temperature sensitive, and also because commercial coaters use industrial-level tumblers to apply the powder. The wax is necessary to avoid a smudgy mess just from handling the bullets. If you want to do it yourself, make sure the bullets are cleaned before application. Likewise, moly can build up in a bullet seating die so clean it out every now and again.

BN Coating Kit
BN can be applied easily using a vibratory tumbler and the contents shown. Put the BN powder in the bottle with the bullets, run the bottle in a vibratory cleaner for a spell, and that’s that. Check HERE for more information on bullet coating.

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

Shooting Skills: Shooting the Breeze, 2

Facebooktwittergoogle_pluspinterestyoutube

Adjusting for wind effect first comes from collecting information. There are two main components and one very important key. These three steps are essential. Keep reading to learn more.


Glen D. Zediker


Learning to shoot well on a windy day involves inputs. A lot of inputs.

Pretty much: wind speed and wind direction are the combining key factors that determine how much sight correction or “hold off” (if you prefer) is needed to get to target center. Speed and direction inputs combine to make a decision on the correction amount. Speed and direction, in tandem, have compounding or offsetting influences on the amount of correction. If either changes, the correction changes.

For instance: if the direction changes and the speed stays the same or the speed changes and the direction stays the same, it’s just more or less correction. But it’s imperative to keep in mind that these are linked.

Most shooting ranges, if construction plans made it reasonably feasible, are set up facing North. That helps. Head- and tail-wind components are less influential than the cross-wind component.

1. Estimate Speed
Being a competitive shooter and, therefore, an admittedly unashamed gamesman, employing some sort of short-cut electronic trickery comes first to mind. A wind meter is the fastest and surest way to get a start on a number. There are very good hand-held meters available, and these range in cost, convenience, and complexity levels. Some provide vauable additional information (such as density altitude), the use of which will be talked on another time.

wind meter
Learning to read wind speed comes only from experience, but something like one of these Caldwell-brand units jumps the learning curve way on up in a hurry. It’s simple, accurate, and well worth the less than $100 it costs. This is the Cross Wind Professional Wind Meter. See more HERE.

Visible indicators are simply observations. If it’s a shooting range, and if there are wind flags, look at the angle the wind is standing a flag out to, divide that by 4 and that’s a close approximation of wind speed. Of course, that depends on the flag material, and so on. Wind flags mostly help sense direction.

I know this is a serious cop-out, but experience is really the only teacher. There’s an old-school wind estimation guide first published eons ago that provides some input on guessing wind strength based on environmental clues. Click HERE to download an updated copy of the “Beaufort Scale.”

Stop! The wind doesn’t always blow the same the entire span of the range. Especially in the West, it’s plenty common to see faster or slower velocity areas between the firing line and the targets. Trees, ground clutter, topography, and so on, all create either passages or obstructions to the flow of the wind. Up to 600 yards, wind nearer the shooter should be given more weight; beyond that distance, wind strength nearer the targets is likely to exert disproportionate influence on the bullet. Reason is a matter of bullet velocity at the point of more or less wind impact. To be clear: even if we’re seeing relatively calm conditions at, say 500 yards, but it’s a tad amount gusty up close to the muzzle, early deflection of the bullet compounds to exert a stronger influence the farther the bullet travels.

range wind speed
Wind doesn’t always blow the same across the full depth and breadth of the range. Up to 500-600 yards, give a little more weight to the wind behavior (speed mostly) nearer the firing line. And, keep in mind that you’re shooting down a one-target-width corridor! Pay attention where it matters.

2. Determine Direction
This should be easy. However! Direction can change just as can speed. It’s not normally going to swap, but rather will vary in fractional shifts. A ticklish wind is a “fishtail” that waffles between 11 and 1 o’clock.

range flag
If there are flags on your shooting range, they mostly function to indicate wind direction, but can be a clue to wind speed: divide the angle by 4 and get an approximation of speed in miles per hour. Call this one 18 mph.

3. Find The Pattern
This may be the most important advice I can give on wind shooting. Wind cycles. Rarely does it blow at a constant and steady rate for very long. Wind cycles every 5-10 minutes. It builds, then peaks, then drops, then as implied, it runs the cycle again. That doesn’t necessarily mean it goes from calm to windy; it goes from windy to windier. But it will change, and most often will do so predictably. Watch the wind for a spell, running a stopwatch, and make notes on what you’re estimating for values at the high and low in the cycle.

At a tournament I want to shoot into a build-up, or, in other words, start my string at the low point in the cycle. And I also want to shoot all my rounds within the timeframe of the cycle! We have 20 minutes at the 600-yard-line, so scheduling can be an important part of strategy for this yard-line.

wind cycle
The most important thing I can tell you about wind: It cycles! Pay attention before you shoot and time the highs and lows you see. Chances are this pattern will repeat over and over at least for the next hour or so. This knowledge is also a huge help to varmint hunters.

If you know what amount a 10-mile-per-hour crosswind will (is supposed to) move your bullet at some distance, interpret the initial correction from that. If you guess the wind at 5 mph, take half of it; if the angle is less than full-value, reduce the correction as discussed last time by the fractional value, like half of the estimated amount for a wind that’s moving from 4:30 to 10:30.

clock face
For reference…

None of this is finite. Reading wind is more art than science. Next time I’ll talk about how to put all the inputs to use and keep all your shots on target.


Information in this article was adapted from material in several books published by Glen Zediker and Zediker Publishing. Glen is a card-carrying NRA High Master and earned that classification in NRA High Power Rifle using an AR15 Service Rifle. For more information and articles available for download visit ZedikerPubllishing.com

Ultimate Reloader: New 6.5 Creedmoor Ammunition from Norma

Facebooktwittergoogle_pluspinterestyoutube

Gavin Gear, Ultimate Reloader:

Norma is known for their high quality brass and ammunition, I’ve used Norma brass for precision reloading in calibers like .30-06 with great results. Recently, I saw that Norma had announced a new addition to their Professional Hunter lineup of ammunition: in 6.5 Creedmoor! I thought I should try some out with the Ruger Precision Rifle, and that’s what I’ll cover in this post.

As you saw in the video, this ammunition behaves more like match ammunition than it does hunting ammunition- I really wish it was deer season! Here’s the chronograph results:

With an SD of 13.7 FPS, this ammunition is very consistent in terms of velocity. It’s not surprising that the first four shots went into a .5″ group. This new ammunition is built around the Swift Scirocco II 6.5mm Bullet, and here’s more info about this precision-oriented hunting projectile:

Technical Information

  • Caliber: 264, 6.5mm
  • Bullet Diameter: 0.264
  • Bullet Weight: 130 Grains
  • Bullet Length: 1.350″
  • Bullet Style: Polymer Tip Spitzer Boat Tail
  • Bullet Coating: Non-Coated

Ballistics Information:

  • Sectional Density: .266
  • Ballistic Coefficient:.571

This is certainly a great choice of ammunition if you are hunting medium game with a rifle chambered in 6.5 Creedmoor. I do hope to show more 6.5 Creedmoor rifles here on Ultimate Reloader chambered in 6.5 Creedmoor- stay tuned!

It’s always good to feel the sharp recoil of the Ruger Precision Rifle against my shoulder, and to smell the burnt gunpowder in the air. Can’t wait to sit down again with this ammunition to see if I can get that 3/8″ 5-shot group I know this ammo is capable of! If you are looking for this new 6.5 Creedmoor Professional Hunter ammunition, Midsouth Shooters Supply has it!

Have you been shooting Norma Professional Hunter ammunition? If so, please share your experiences!

Thanks,
Gavin

Check out the Ultimate Reloader site HERE for more reviews, how-to’s, and much more!

Reloaders Corner: AR15 Chamber Options

Facebooktwittergoogle_pluspinterestyoutube

It’s vital to understand “which” chamber is in your AR15. What you don’t know can create big problems. Here’s why.


Glen Zediker


I’ve talked over or at least touched upon this topic, here and there, in other articles. And this week I got four phone calls asking for advice on “which” AR15 chamber I’d recommend. I guess that sort of spurred creation of this article. My primary goal (always) is to answer questions, and ideally before they are asked. So…

NATO mark
A TRUE NATO load always has this mark on its base: the cross-in-a-circle stamp. Some commercial ammo that appears to be mil-spec may or may not be, but err on the safe side.

There are a few options today, and, no, it never was “simple.” There have always been two distinct chambers cut for .223 Remington and 5.56x45mm NATO. And that’s the difference right there! See, .223 Rem. is a commercial round, 5.56 is a mil-spec round. Yes. They are “the same,” but they’re not. The difference is in how these two are loaded with respect to pressures. NATO is a whopping lot hotter. To the tune of +15,000 PSI.

The differences in the chambers are, pretty much, that a NATO has a significantly longer throat or leade or freebore, whichever term is preferred. This is the area in a chamber that extends beyond the case neck cut.

Chamber-All gage
I use a Hornady LNL OAL gage to find out exactly the length of the chamber throat. Get one at Midsouth. This read shows “NATO” by the way. Sierra 80gr MatchKing at 2.550 inches to touch the lands. Wylde should read 2.475. SAAMI-minimum will (usually) be 2.395.

This area in a chamber accepts the initial gas expansion, so, in one way, it can be looked at like an expansion chamber. More room for expanding gases effectively reduces stress on the case. When this area is lengthened, there’s more room, less pressure build. When this area is shortened, there’s less room, more pressure build.

As said, .223 Rem. is short, NATO is long. Take a NATO-spec round and fire it in a .223 Rem. chamber and there’s too much pressure. The .223 Rem. will “fit” just fine; there’s no influential differences otherwise in chambering specifications between .223 Rem. and 5.56.

You’ve probably heard all that before. It’s very important to know. “Which” chamber affects making loaded ammo choices, and also in interpreting reloading data.

NATO pressure
Here’s “real” NATO fired in a commercial .223 Rem. chamber. Ouch. The imprints and general beating the case head shows are the result of the additional pressure in the NATO loading, and the .223 Rem. chamber’s inability to excuse that much extra pressure.

Short history as to the reasons these two chambers exist: .223 Rem. in civilian, commercial application was a varminting-type round, along the lines of .222 Rem. When SAAMI (Sporting Ammunition and Arms Manufacurers Institute) laid down the specifications for that round it did so based around the prevalent short .224 bullets of the day, which were often 52-grain flatbase designs. For best accuracy with the little bullets, the throat was kept short, decreasing the distance the bullet had to travel to engage the lands or rifling. Some, most, me included, call this chamber a “SAMMI-minimum.” The mil-spec ammo assembled for M16s used a 55-grain boat-tail loaded to a higher velocity, and the longer throat was specified to handle the extra gas.

What matters is knowing that you don’t have a .223 Rem. chamber. A NATO can handle anything.

Most AR15s I’ve handled in the past good long while have NATO chambers. It’s the only thing that makes any sense for someone, anyone, who wants to fire sto-bot ammo. Not all the mil-type commercial loads (like the “white box” varieties) are true NATO spec, but if the ammo is not marked “.223 Rem.” it might be a tad amount to a lot hotter than a short-throated gun should handle. True NATO ammo has a distinct marking on the case base.

There is now another what’s become “standard” chamber for AR15s, and that’s the Wylde. Named for AR15 accuracy pioneer Bill Wylde, this reamer specs fall between SAAMI-minimum and NATO. Bill started cutting these chambers for NRA High Power Rifle contestants who needed more room in the throat to accept the long 80-grain bullets but not so much room that the shorter 69-grain bullets were having to leap a gorge to engage the lands. A compromise. A Wylde is a good chamber, and a good choice.

Compare .223 chambers
Here’s the best way to see what’s going on with AR15 chambers. These are Sierra 80-grain MatchKing bullets loaded to an overall cartridge length that has the bullet touching the rifling. Left to right: SAMMI-minimum .223 Rem.; Wylde; NATO. Wahoo. Big, big differences. There’s a little more than 0.150 inches between the SAAMI-minimum and the NATO and that space in the throat handles the extra PSI of NATO-spec loadings. It is also, by the way, how to know (or one way to know) the actual “length” of a chamber throat.

Here’s how it breaks down, according to me:
SAAMI-minimum or commercial .223 Rem. chamber is good for those who are wanting the best accuracy from light bullets. Can’t run mil-surplus ammo or NATO-spec commercial though.

NATO is for anyone who wants to shoot anything and everything out there safely.

NATO stamp
There’s a few ways I’ve seen “NATO” marked on barrels, and I’ve seen a good number of barrels that aren’t marked at all. That’s terribly irresponsible. Look for “5.56” since that seems to have become the more common way to denote “NATO.”

Wylde is more or less an “Improved NATO,” and my experience has been that it will safely handle true NATO loads, even if that’s not its intended design. I base that on spent case condition. It will shoot a little better than a NATO with lighter, shorter bullets. The Wylde is available more and more commonly now from different manufacturers and in “drop-in” accessory barrels.

winchester .223 ammo
If you have a “.223 Rem.” stamp on your barrel don’t feed it any ammo that is not clearly likewise marked “.223 Rem.” Should say the same on the case headstamp. If it doesn’t read “.223 Rem.” do not fire it in a barrel stamped “.223 Rem.” This ammo is safe for any AR15. If you don’t see a stamp on your barrel, find out…or just fire .223 Rem.

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

Gun store employees trade gunfire with fleeing men. Was it legal?

Facebooktwittergoogle_pluspinterestyoutube
James Hillin, owner of Full Armor Firearms, knows it is “my responsibility to make sure we are doing the right thing” when it comes to selling guns. Photo: Jon Shapley, Houston Chronicle Staff

Perhaps you heard what recently happened to our friends at Full Armor Firearms in Houston.

After 13 burglaries in five years, including one earlier this month, owner James Hillin asked two of his employees to stay overnight in the store.

During the night, two cars pulled into the parking lot. According to the Houston Chronicle, when the Full Armor workers stepped outside with their weapons, one of the five men, who were standing near the employees’ cars, shot at them. The employees were not injured, and gunfire was exchanged as the men drove away.

You can read the whole story, including an interview with owner James Hillin, the criminal backgrounds of the men who were detained, and the likelihood of the case being presented to a grand jury here:

http://www.houstonchronicle.com/news/houston-texas/houston/article/Gun-store-employees-trade-gunfire-with-fleeing-

We asked Michele Byington, an attorney at the law firm of Walker & Byington, PLLC, and independent program attorney for Texas Law Shield, for her opinion on the situation and she says the employees were acting legally.

“Here in Texas, both burglary and theft during the night time are considered crimes against which a person may use deadly force. In fact, displaying a firearm to cause apprehension that you will use it if necessary, is considered force, rather than deadly force. So the employees, even though they potentially could have used deadly force, were just using force to stop this situation when they displayed their AR-15s.”

She went on to explain that, while there are very few circumstances where you can shoot a person who is fleeing (and even then, she added, it will be an uphill battle with a jury), the fact that the criminals shot at the employees while running away, justified the return fire by the employees.

“Any time a person has a reasonable belief they are in immediate danger of death or serious bodily injury, they may use deadly force to defend themselves. And someone shooting at you definitely qualifies for that!”

Ultimately, Michele stated, the gun store employees acted well within the confines of the law.

Glock G29 10mm Pistol Review

Facebooktwittergoogle_pluspinterestyoutube

Here’s a “real” 10mm Auto for the real world. If you’re looking for a very compact and very powerful semi-auto, the author thinks you can’t do better than this one… Keep reading.


By Major Pandemic


msss_g29_from_glockDuring my behind-the-scenes tour of the U.S. Glock factory, many things drifted through my mind. At that time I was one of eleven editors invited to the unveiling of the secret release of the Glock G43. That predictable and yawn-able moment of the G43 introduction where we all exclaimed, “Good Lord, finally…” my mind was thinking about a G29. The G29 is in essence a G19 in 10mm and is Glock’s “compact 10mm” pistol. Though the G29 is actually about 1/4-inch shorter than the G19, the reality is that the G29 is like a G19 9mm that has overindulged a bit at the pasta bar.

The 10mm G29 is also Glock’s most powerful compact pistol, capable of delivering 550+ ft/lbs of energy depending on the chosen ammo. Not bad considering there’s 10+1 rounds on tap… It’s a lot of power in a small and concealable package.

Brief History of the 10mm Auto
The development of the 10mm round is a story that dates back to the 1970s. The idea was a high-power flat-shooting semi-auto cartridge that would run in a 1911-platform pistol, and that would approximate .357 to .44 Magnum (mid-weight loads) ballistics. In the end, Col. Jeff Cooper was involved in its development at the point Norma began producing ammunition in the early 1980s. The FBI felt a little outgunned on the streets and briefly adopted the 10mm with the full-bore loads that were first released. The reality turned out to be that the vast majority of the agents were uncomfortable shooting and handling the larger-dimensioned and significantly more powerful 10mm guns. The ammo manufacturers responded with the 10mm “Lite” rounds which essentially dropped the power all the way down to about .40 S&W levels; however, the FBI and the public then wanted a smaller cartridge format with less power than what the original 10mm round delivered. Smith & Wesson thought there was a waste of unused powder space in the longer 10mm brass and developed a “10mm Short,” or what we now know as the .40 S&W. That round delivered everything the FBI specs wanted in a format that would fit in a smaller 9mm-sized pistol platform.

10mm, .40 S&W, 9mm
10mm, .40 S&W, 9mm

The current crop of 10mm rounds from Hornady and others are not powered-down to the degree the earlier “Lite” rounds were, and some are certainly loaded hotter as we see with the higher-power Buffalo Bore, Federal, and Liberty Ammunition rounds. The current 10mm rounds are much more powerful than .40 S&W. .40 S&W usually delivers around 450 ft/lbs of energy and the 10mm typically delivers around 550, about 20-percent more power.

Today the 10mm cartridge has devoted fans and still has a following in Special Forces, Special Law Enforcement, and is growing as a hunting cartridge.

Glock’s 10s: G20, G20SF, G29
Glock began producing the G20 in 1991 to answer market demand in the 10mm Auto’s heyday. Even after demand tapered off there was still a desire for the 10mm Auto pistol, but the major complaint was the overall large size of the grip. Later in 2007, Glock introduced the G20SF which is the “Short Frame” model. The G20SF model provides a grip feel circumference equal to a standard .40 S&W-chambered Glock.

G29 vs. G19
The G29 is about the same size as a Glock 19 but a little thicker.

The net result is that those with medium to small hands can establish a comfortable and secure grip. Glock has been specifically marketing the G20 and G20SF as hunting companion firearms to be used for the hunt or to provide a humane finishing shot on very large game. For those hunting in bear country, a 15-round pistol that can deliver power that rivals some magnum rounds is an asset to personal security, to say the least. Many of the relatively rabid 10mm fanatics, myself included, requested/demanded a smaller concealable gun… The small format G29 10mm was born.

Why I Had To Have One
I would argue why wouldn’t you want one, however I can see there may be some folks who just do not understand. I’ll put it this way: Why would someone carry a .357 Magnum Ruger LCR snubby revolver when they could just carry the same gun and shoot it with less recoil in .38 Special? The simple answer is POWER and the same reason muscle cars were created. Do I need the power in a handgun to down small aircraft? Well not recently, but that doesn’t mean I don’t want to have it. In fact, I have been lusting after the rather surprisingly mild-recoiling G29 since I picked up my G20. Who doesn’t need .41 Rem. Magnum power in a concealable 11-round pistol? Well I did.

Fit, Finish, Feel, Features, Function
The G29 has the fit, finish, and features the same as any other Gen-3 Glock you may have handled, however the slide and barrel is even wider and beefier than Glock’s .40 S&W pistols to handle the power of the 10mm Auto round. The side profile of the G29 is just a bit fatter than a G19 but about a 1/4-inch shorter as noted previously.

If you want night sights, I recommend getting them as an option directly from Glock as they are a bit less expensive than adding them later plus they will come factory zero’ed.

Just like any other Glock, reliability was flawless from the first to the last round. Thankfully Hornady sent me a couple boxes of their lighter-shooting 560 ft/lb Custom 10mm Auto 180gr XTP rounds and Federal supplied some of their full power 650 ft/lb 10mm 180gr Trophy Bonded JSP rounds. What surprised me most was that the recoil was really quite pleasant and even easily tolerable and controllable with the harder-hitting rounds. I will admit, the full-size G20 is a treat to shoot with hot rounds, the G29 is a bit snappy and I had to take a break after every three mags. Not painful, but the lighter G29 is snappy enough with the harder-hitting rounds that the snap feels more like bite after more than three or four mag-fulls.

Accuracy
My friend and I have made it a habit to routinely plink and hit the 12×12-inch steel 100-, 200-, and 300-yard gongs with our Glocks. Oddly enough, once you figure out the 12-15 foot holdover at 300-yards, it is not that difficult. Just like the G20 testing I did, shooting flatter shooting 10mm at distance was a whole new game. 100-yard torso shots were simply and downright easy. The original intent of the cartridge was clear: this is a longer-range handgun round and if zeroed at 50 yards, the 10mm Auto only drops about 4.5 inches at 100 yards and is only 36 inches low at 200 yards and still delivering around 400 ft/lbs of energy (about the same energy a 9mm has at the muzzle). This is a very impressive round that is more than adequate for hunting deer-sized game at a little distance.

Otherwise at normal combat distances, the G29 was marginally less accurate than your average G26 or G27 due to the increased recoil the shooter is managing.

G29, G43
10mm power is not that much bigger than the 9mm G43.

Final Thoughts
I love this little 10mm. If you have a need to drop something with about 70 to 90 percent more power than your average 9mm then the G29 is your pistol. What I love about the G29 is that it delivers the most powerful semi-auto pistol round in a reliable gun outside of a Desert Eagle. I own two Desert Eagles, and would argue the Glock 10mm is the most reliable high-power semi-auto pistol, and the G29 is the smallest format available.

G29 specifications


SOURCES
Glock – http://us.glock.com
Federal Ammo – http://www.federalpremium.com/
Hornady Ammo – http://www.hornady.com/


Major Pandemic is an editor at large who loves everything about shooting, hunting, the outdoors, and all those lifesaving little survival related products. His goal is simple, tell a good story in the form of a truthful review all while having fun. He contributes content to a wide variety of print and digital magazines and newsletters for companies and manufacturers throughout the industry with content exposure to over 2M readers monthly.  MajorPandemic.com

major-pandemic-small