Category Archives: Reloading

Everything from case prep, to components, the reloading category will be home to articles about reloading and reloading items.

RELOADERS CORNER: REALLY Understanding Case Neck Sizing

Facebooktwittergoogle_pluspinterestyoutube

Determining and setting the correct case neck diameter is a critical, crucial step in the handloading process: Here’s all you need to know!

sizing die bushing

Glen Zediker

Here’s another I get (too many) questions about, and when I say “too many” that’s not at all a complaint, just a concern… This next hopefully will eliminate any and all confusions about this important step, and decision, in the reloading process.

Basics: A cartridge case neck expands in firing to release the bullet. If the load delivers adequate pressure, it can expand to the full diameter allowed by that portion of the rifle chamber. That diameter depends on the reamer used. After expansion and contraction, the case neck will, no doubt, be a bigger diameter than what it was before being fired.

Back to it: To get a handle on this important dimension, the first step is tools. As always. A caliper that reads to 0.001 inches will suffice.

You need to find three outside diameter numbers: fired case neck diameter, sized case neck diameter, loaded case neck diameter. If you know the loaded case neck diameter then it’s likewise easy to find out the case wall thickness, or at least an average on it if the necks aren’t perfectly uniform (and they won’t likely be unless they’ve been full-on outside case neck turned).

Case neck sizing diagram
“All the math” works in either direction. Here’s how.

A fired case neck has to be sized back down to a dimension that will retain a bullet from unwanted movement (slippage) in the reloaded round. Case neck “tension” isn’t really an accurate term, in my mind, so I prefer to talk about “constriction.” The reason is that making a case neck diameter smaller and smaller does not, after a point, add any additional grip to the bullet. Once it’s gotten beyond maybe 0.005 inches, it’s just increasing the resistance to bullet seating not increasing the amount of tension or retention of the case neck against the bullet. The bullet is resizing the case neck, and probably getting its jacket damaged in the process. If more grip is needed, that’s where crimping comes in…and that’s (literally) another story.

IMPORTANT
Always, always, account for the “spring-back.” That is in the nature of the alloy used to make cases. If brass is sized to a smaller diameter it will spring back plus 0.001 inches bigger than the tool used; if it’s expanded to a bigger diameter, it will spring back (contract) to 0.001 inches smaller than the tool used. This is always true! The exception is that as brass hardens with age, it can spring back a little more.

How much constriction should there be? For a semi-auto, 0.003 is adequate; I recommend 0.004. For a bolt-action, I use and recommend 0.002, and 0.001 usually is adequate unless the rifle is a hard-kicker. See, the main (main) influence of more resistance in bullet seating is to, as mentioned, set up enough gripping tension to prevent unwanted bullet movement. Unwanted movement can come from two main sources: contact and inertia. Contact is if and when the bullet tip meets any resistance in feeding, and gets pushed back. Intertia comes from the operation and cycling of the firearm. If there’s enough force generated via recoil, the bullets in rounds remaining in a magazine can move from flowing forces. However! That also works literally in the other way: in a semi-auto the inertial force transmitted through a round being chambered can set the bullet out: the case stops but the bullet keeps moving. I’ve seen (measured) that happen with AR15s and (even more) AR-10/SR-25s especially when loading the first round in. Put in a loaded magazine, trip the bolt stop, and, wham, all that mass moves forward and slams to a stop. Retract the bolt and out comes a case with no bullet… Or, more usually, out comes a case with the bullet seated out farther (longer overall length). Never, ever, set a constriction level on the lighter side for either of these guns.

Most seem to hold a belief that the lower the case neck constriction the better the accuracy. Can’t prove that by me or mine. If there’s too much constriction, as mentioned, the bullet jacket can be damaged and possibly the bullet slightly resized (depending on its material constitution) and those could cause accuracy hiccups. If it’s a semi-auto and constriction is inadequate, the likewise aforementioned bullet movement forward, which is very unlikely to be consistent, can create accuracy issues, no doubt. My own load tests have shown me that velocities get more consistent at 0.003-0.004 as compared to 0.001-0.002.

Benchrest competitors use virtually zero constriction, but as with each and every thing “they” do, it works only because it’s only possible via the extremely precise machining work done both in rifle chambering and case preparation. It is not, decidedly not, something anyone else can or should attempt even in an off-the-shelf single-shot. As always: I focus here, and in my books, on “the rest of us” when it comes to reloading tool setup and tactics. Folks who have normal rifles and use them in normal ways. And folks who don’t want to have problems.

So, find out what you have right now by determining the three influential diameters talked about at the start of this article. Most factory standard full-length sizing die sets will produce between 0.002 and 0.003 constriction. Getting more is easy: chuck up the expander/decapper stem in an electric drill (I use oiled emery cloth wrapped around a stone), and carefully reduce the expander body diameter by the needed amount, or contact the manufacturer to see about getting an undersized part. I’ve done that.

polish expander
It’s easy to increase case neck constriction if you’re running a conventional sizing die setup that incorporates an expander or sizing button. Just make the button diameter smaller; then it won’t open up the outside-sized case neck as much as it is withdrawn from the die and over the expander.

If you want less constriction than you’re currently getting, about the only way to do that one is hit up a local machinist and get the neck area in the die opened by the desired amount (considering always the 0.001 spring-back). Or get a bushing-style die…

Redding S Die
It’s not perfectly necessary to use an inside case neck expanding tool if you’re using a bushing-style die. I think it’s wise for a multitude of reasons I’ve gone on about in the past, and may should again, but if the math is carefully done, and the cases are all same lot, outside neck reduction will result in consistent inside case neck diameter sizing. Example: Case neck wall thickness is 0.012, outside sized case neck diameter is 0.246 (from using, remember, a 0.245 bushing), then the inside case neck diameter will be 0.222, and that will be a 0.002 amount of bullet constriction (0.224 caliber bullet).

The bushing-style design has removable bushings available in specific diameters. Pick the one you want to suit the brass you use. If you run an inside case neck expanding appliance along with a bushing die, usually a sizing-die-mounted “expander ball” or sizing button, make sure you’re getting at least 0.002 expansion from that device. Example: the (outside) sized case neck diameter should be sufficiently reduced to provide an inside sized case neck diameter at least 0.002 smaller than the diameter of the inside sizing appliance. That’s done as a matter of consistency and correctness that will account for small differences in case neck wall thicknesses. And when you change brass lots and certainly brands, measure again and do the math again! Thicker or thinner case neck walls make a big difference in the size bushing needed.

Check out a few ideas at Midsouth HERE

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

Midsouth’s 48th Birthday Bash!

Facebooktwittergoogle_pluspinterestyoutube

48 years ago, we started out in a small shed. Located in New Market, TN, just east of Knoxville, near Jefferson City, Midsouth was a catalog driven retailer catering to a few folks who loved to load their own ammo, save a little money, and drastically increase their accuracy.

Flash forward to the present day, and a few hundred miles west, and you have pretty much the same thing, just in a bigger building, and coming to you live on the world wide web. We still believe in saving you money, being fair with our prices, and our shipping. We still cater to the reloader, but have branched out to other “D.I.Y.” folks with AR parts, and kits, muzzleloader kits, and more. We’re still a small, family owned company, with a tight-knit group of employees. Though the location changed, and the technology by which you shop with us has advanced, in our hearts, we’re still us.

Since it’s our birthday, we want to celebrate with you! You’re the reason we get to come here, flip on the lights, and get to work. We love our customers, and to show you just how important you are to us, we lined up an entire week of deals, just for you! We’re talking HAZ-MAT deals, giveaways, specials, and much more. Want to get in on our birthday presents? You need to sign up for our E-Flyer! Click here to subscribe. We will do our best not to bug you by only sending you deals to your inbox worth opening. Did we mention we’re giving away over $200 every day in gift cards, and gear? Yeah, our birthday week’s going to be AWESOME!

CLICK HERE to subscribe to our E-Flyer!

Take a Tour of Midsouth!
Our friends, the Quinns from GunBlast, stopped by for a visit recently. We gave them a tour of our facility and let them in on our day to day. It was great to have them come by so we could share what we do, and what we believe in when it comes to our customers. There’s a personal touch we add to every product you order, from the order taker, to the packer. Check out the video and Thank You for shopping with Midsouth Shooters Supply

RELOADERS CORNER: 5 Simple Steps To M1A Reloading Success

Facebooktwittergoogle_pluspinterestyoutube

The M14/M1A can be a cantankerous beast to reload for, so follow these suggestions to tame it down. Keep reading…

M14 match shooter

Glen Zediker

The “5 steps to success” are at the end of this article… First, read about why they will matter as much as they do!

A couple times back I decided that the best topic to write about might be the most current, and I defined that by the most recent questions I fielded on a topic. As the assumption goes: they can’t be the only ones with that question… So, over this weekend I had a series of questions from different people all on the topic of reloading for the M1A, the civilian version of the military M14.

Now. Since the M14 was the issue rifle of choice for a good number of years, and without a doubt the (previously at least) favored platform for the various-branch military shooting team efforts, it went through some serious modifications to best suit it to that very narrow-use objective: High Power Rifle competition. Although the M14 hadn’t been routinely issued to most troops for decades, it was still going strong in this venue. That changed in the mid-90s when Rules changes boosted the AR15 platform to prominence, and soon after, dominance.

Match conditioning an M14 involved modifications to virtually every system component, and resulted in a fine shooting rifle. Very fine. Amazingly fine. The one mod that prodded the impetus to write all this next was the barrel chambering specification changes. A while back I went on about what 7.62 NATO is compared to its fraternal twin .308 Winchester.

Match-spec M14 chambers are decidedly NOT NATO! They’re .308 Winchester, pretty much. I say “pretty much” because they’re on the minimum side, dimensionally, compared to SAAMI commercial guidelines for .308 Win. Lemmeesplain: the true “match” M14 chamber is short, in throat and in headspace. The reason is ammunition bound. I’ll explain that too: Lake City Match ammo was and is a universal competition cartridge. Military teams compete in, well, military team competitions. Some are open to civilians, some are not. All, however, used issued ammo across the board. You were given your boxes of Lake City Match, or Special Ball, or one of a couple other same-spec variants, prior to the show and that’s what you used for the event. Everyone used the same ammo. Civilian or Service. There were exceptions, like long-range specialty events, but what was said held true the vast majority of the time. That meant that everyone wanted the same well-proven chamber, civilians too.

Lake City Match ammo
Back in the day… Here’s what you got, which was the same as what everyone else got, for a DCM (now CMP Inc.) rifle tournament. “Here ya go son, and good luck…” and since we took as much luck out of the equation as possible, we all used a rifle chamber in our M14s and M1As that maximized Lake City Match ammo performance. And that’s why I’m writing all this…

Given this, that’s why a “match” M1A chamber is different than a SAAMI. It was built to maximize Lake City Match accuracy. That’s a short round. The headspace is a few thousandths under what’s common on a chamber based around commercial .308 brass. 1.630-inch cartridge headspace height is regarded as minimum for commercial.

Headspace reading Lake City Match
The true M14/M1A match chamber is a short chamber: headspace is very tight. That’s because Lake City Match ammo is short. Compare this to what you might want to use, and if you have a genuine match chamber, best make sure the ammo fits… Measure both the results of sizing operations and also any new ammo or brass before you fire it in one of these chambers! I have encountered commercial .308 Win. rounds that were too long out of the box (cartridge case headspace dimensions). Here’s a cartridge headspace read on a Lake City Match compared to a commercial Winchester match load (inset) I had on hand. Read taken with a zeroed Hornady LNL gage. And NEVER fire commercial ammo intended for hunting use; the component mix and round structure is almost certain to be wrong.

Check out  headspace gages  at Midsouth HERE

So sizing a case to fit a match M1A, especially if it’s a hard-skinned mil-spec case, takes some crunch. To compound difficulty, M1As and M14s unlock very (very) quickly during firing. The bolt is trying to unlock when the case is still expanded against the chamber walls. The little bit of space this creates results in a “false” headspace gage reading on the spent case. It’s going to measure a little longer than the chamber is actually cut. That can lead someone to do the usual math (comparing new case and spent case headspace reads) and end up with a “size-to” figure that’s too tall, that has the shoulder too high. For instance, let’s say the spent case measured 1.634 and the new case measured 1.627, indicating 0.006 expansion or growth. Given the usual advice (from me at least) to reduce fired case shoulder height by 0.004 (semi-autos) for safe and reliable reuse would net a size-to dimension of 1.630. But. There can easily be a “missed” 0.002-0.003 inches resultant from the additional expansion explained earlier. My advice for a match-chambered M1A is to reduce the fired case all the way back down to the new case dimension. That might sound like a lot, and it might sound excessive, and it might be — but, it’s the proven way to keep this gun running surely and safely. That, however, is not always an easy chore. Some mil-spec brass is reluctant to cooperate. And, by the way, don’t kid yourself about reducing case life. This gun eats brass; I put just three loads through a case before canning it.

M14 gas system
These rifles have an overactive gas system that tends to create premature bolt unlocking, and this leads to excessive case expansion. I recommend resetting the fired case headspace to match a new case reading for safety’s sake.

Two helps: one is to use petroleum-based case lube, like Forster Case Lube or Redding/Imperial Sizing Wax. And size each case twice! That’s right: run each one fully into the die twice. Double-sizing sure seems to result in more correct and more consistent after-sizing headspace readings.

A “small-base” sizing die (reduced case head diameter) is not necessary to refit match brass into a match chamber. It might help using brass that was first-fired in a chamber with more generous diameter, but sized diameter isn’t really the “small” part of the M1A match chamber. Again, the small part is the headspace.

Forster National Match dies
A Forster “National Match” die set is a guaranteed way to ensure adequate sizing for an M1A match chamber. This sizing die has additional shoulder “crunch” built in, and that’s the “National Match” part: it essentially replicates Lake City Match ammo dimensions.

Take a look at these dies HERE

So that’s the source the problem reloading for this rifle. And, again, “this rifle” is an M1A with a true mil-match armorer’s spec chamber. We best make sure that our sized cases are going to fit the chamber, plus a couple thousandths clearance for function and safety. And safety mostly. M1As are notorious for “slam-fires” which happen when the free-floating firing pin taps the primer on a chambering round delivering sufficient intrusion to detonate. Impressive explosions result. If the case shoulder is stopping against the chamber before the bolt can lock over, that can be all the pin needs to maximize the effect of its inertia.

Speaking of, there are three sources and fortunately the same number of cures for slam-fires. One, first, is the correct sizing on setting back the case shoulder so the shoulder doesn’t stop against its receptacle in the chamber. Next is making sure there are no “high” primers; each primer should be seated at least 0.005 inches under flush with the case head. Next, and very important: primer composition, which equates to primer brand. Do not use a “sensitive” primer, one with a thinner, softer skin. Although they are great performers, Federal 205 are too sensitive for this rifle. Better are WW, CCI 200.

My thoughts
I don’t like this chamber… I also used one because I competed in events with issued ammo. I don’t recommend a “true” M14 chamber because that’s a NATO. Plain old standard .308 Win. specs work better and allow more flexibility in ammo and component selection. Even though the true mil-spec match chambers are not common, the reason I’ve written as much as I have on this topic over the years is because a mistake can be disastrous. One of the folks who wrote me one question shared a story about a friend who blew up his match M1A firing improper commercially-loaded ammo through it. Whoa.

A CASE FOR THE M1A
This gun needs a stout case. They won’t last long no matter what but they might not last at all if they’re too soft. I’ve broken some new commercial cases on one firing. Thicker/thinner isn’t the issue: it’s the hardness of the alloy. Harder material better resists reaction to the additional stress of premature system operation. New-condition mil-spec cases are great, if you can get them. Next best is Lake City Match that was fired in a match-chambered rifle. Stay completely away from anything, and everything, fired through a NATO-spec chamber. It’s nigh on not possible to size them enough to suit. For me, WW is the only commercial case I will run through my M1A. They’re thin, but pretty hard.

308 components
Here’s a full component set I recommend, and use, for true match chambered M1As.

I did a whole chapter solely on reloading for the M14/M1A for my book Handloading for Competition that didn’t get printed into it for various reasons. However! I have the entire chapter available as a PDF download on my website. Get it HERE

And for even more info on reloading for the  M1A, order the new book Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

 

M14 loading dos/donts

As Temperatures Go Up in Texas, So Does Road Rage

Facebooktwittergoogle_pluspinterestyoutube

A recent national television report asserted that road-rage incidents are becoming more common and more deadly, with the latest incident taking place in Pennsylvania, in which a man is alleged to have shot and killed a teenage girl during a traffic merge.  Click to watch level-headed advice from your Independent Program Attorney about what to do—and what not to do—in these situations.

Hello, my name is Edwin Walker. I’m an Independent Program Attorney with Texas Law Shield.

I want to talk to you today about an issue that we see on a daily basis. In fact, you will encounter it on a daily basis — the subject of road rage. I am sure that you have all seen road rage. You may have actually been involved in a road rage incident.

Now, if you’re a responsible gun owner, I’m going to give you a few words of advice on how to react when you find yourself in one of these unfortunate road-rage incidents. While on the roadways, we all observe something that makes us upset, whether it’s poor driving, unsafe driving, or just simply somebody being very discourteous.

By all means, you should restrain yourself from engaging that person and telling them how bad their actions were because this can be perceived as an act of road rage. If you’re a lawful gun owner and you have a firearm in your vehicle, you do not want to be viewed as the aggressor in a road-rage situation.

Now, about a situation where an individual has chosen to rage against you, and you are the actual victim of road rage, if you and the other individuals are still in their automobiles, do not use your firearm to respond to any of the rager’s activities. This is because law enforcement views the fact that you’re both still safely in your metal boxes as removing any threat of immediacy that you may be harmed.

So please, if you have a gun, and somebody is raging against you, forget that you have a gun, don’t display it, don’t brandish it, don’t show it, don’t point it, and for God’s sake, don’t fire it. This could result in a lot of trouble for you. Now let’s look at a situation where a road rage incident has escalated to the point where one of the participants has actually gotten out of their vehicle. We recommend that you stay in your vehicle at all times. Do not exit your vehicle because the person who left their vehicle is going to be looked at as the aggressor.

If the other individual has exited his or her vehicle and the person is not in contact with your vehicle, and they do not have a weapon, then do not feel that you can display your weapon in the act of self-defense. People are allowed to just simply stand there and scream at you—scream whatever they want—until they make a demonstrative effort to try to harm you. There is no immediate threat that would justify displaying or shooting or brandishing your firearm.

Now, if the person shows a weapon, in particular, a firearm, the existence of a weapon would give you reasonable belief that there was an immediate threat of harm that would justify an act of force or deadly force.

Even in this situation, I would be very cautious. Now, if this situation escalates even further, where the person has actually made physical contact with your vehicle, whether they are beating on it with an instrument with their fists or they’re attempting to open your door, this would give you the facts that you would need to show that you had a reasonable belief that that individual is unlawfully and forcefully attempting to either enter your vehicle or remove you from your vehicle. This is very very important because this falls under what is commonly known in Texas as the Castle Doctrine.

The Castle Doctrine provides that an individual is given a presumption of reasonableness if they use force or deadly force in a situation where they believe that the person is unlawfully and forcefully either attempting to enter their occupied vehicle or remove somebody from their occupied vehicle. This legal presumption can be very very important because this legal presumption then says that you are allowed to use force or deadly force in response to this other individual’s actions.

We want to keep you safe out on the roadway, so keep these words of advice in mind and try to have a little less road rage out there. If we have a little less road rage, maybe we’ll have a safer world.

 

 

Check out these other great articles from U.S. Law Shield and click here to become a member:

 

The “purple paint law” became official in Texas on September 1, 1997. The law doesn’t appear to be common knowledge for every hunter in the Lone Star State, even though Texas hunting regulations describe it.
Can your employer restrict your ability to carry firearms at the workplace? Click to watch Emily Taylor, Independent Program Attorney with Walker & Byington, explain that in Texas, employers call the shots regarding workplace self-defense.
In this excerpt from a U.S. Law Shield News live report, watch Emily Taylor, independent program attorney with Walker & Byington, discuss the ground rules for carrying firearms into restaurants and bars. Click the video below to find out the significant differences between blue signs and red signs in Texas establishments, and how getting those colors crossed up could lead to some orange jumpsuit time.   If you would like to see these reports live on Facebook, click here to join the Texas Law Shield Facebook page and sign up for live notifications.

RELOADERS CORNER: Shop Setup Savvy

Facebooktwittergoogle_pluspinterestyoutube

Don’t overlook details when setting up shop. Here are a few ideas on dealing with a few tools and tasks to get set up to reload.

bolts and fasteners

Glen Zediker

Set-Up Tools
Time after time, point after point, I address the use of specific tools used in the process of loading ammunition. There are a few tools that never get near a cartridge case or bullet, though, that matter much to contentment. These are the “set-up” tools and appliances that when needed are indispensable. And, as with the loading tools themselves, making the better choices pays off. I joke with myself sometimes that I spend about as much time at auto parts and hardware stores as I do reloading industry outlets…

Get real wrenches for all the dies and tools you own. It’s worth the investment to buy a quality combo wrench at an auto-parts store rather than buggering up all your fasteners with a set of slip-lock pliers. But. You need those too. Everyone needs a slip-joint pliers, like Channellock-brand, but avoid using it whenever possible. Again, correctly-sized quality wrenches won’t muck up your die parts.

craftsman wrenches
Good quality wrenches are a necessity, in my mind. Craftsman fits that bill nicely.

A good quality set of allen wrenches, or hex-heads, likewise is a relative joy to use next to the el-cheapo versions that come with the tools. Get the ball-end kind for even easier use.

reloading bench
I’m sho no carpenter, but after working with handloading enough, a fellow will develop a few essential skills. A few tools to purchase: appropriate sized drill bits for starting screw holes (never don’t drill a hole beforehand); appropriate drill bits for press mounting, usually 1/4 inch, and the kind with a starter point are the bomb; a corded drill, not cordless, and preferably with a level indicator. And drill down straight! Even a tad amount of angle in a bored hole can make it muy difficult to get the fasteners to cooperate.

Press and Tool Mounting
Make an investment in at least “good” grade tools for drilling holes and measuring where to drill them, and then for installing the fasteners. It really makes a difference to have proper size drill bits and drivers.

The press is the base for the dies. It’s important. Of course it is. Mounting is key. I suggest a workbench that’s mounted to a wall, along with its legs fixed down to the floor. It’s the press upstroke, not the downstroke, that taxes the stability or solidness of the workbench.

If you’re building a workbench, consider carefully the overhang and bench-top underside construction, or at least dimensions. What you don’t want, and what I have had so I know, is a combination of press hole mounts that conflict with workbench construction. Like when there is a structural crosspiece right underneath where a hole has to bore through. That’s a mess to deal with, or it can be. Then you have to drill a hole big enough to give a window to install a washer and a nut, and then that nut won’t want to stay tight. Check first before you settle on your plans. 6 inches of overhang (free underside) mounts anything I’ve yet used.

nuts and bolts
Bolt goes down through the press mounting hole, preceded by a plain washer. A fender washer then goes against the bottom of the bench, followed by a nut, either plain preceded by a star washer or nylock. If it’s a star washer, the star points face the nut underside. Get good hardware. And use the fender washer!

Do a template for press mounting. That’s easy by doing the “rub trick” with a soft pencil on a piece of paper taped to the press underside; some manufacturers provide templates, and that’s a nice touch. Otherwise, use a centering tool to mark the holes, used through the mounting holes on the press. Even being a little bit off hurts wonders. And drill straight! Get a drill with a level-bubble. The thicker the bench-top, the more mess a small angle error makes.

A cool trick for drilling holes in laminate or wood is to put masking tape over the marks for the drill bit start marks before boring. This keeps the material from splintering. Never (ever) use the press holes themselves as a guide for the drill bit.

I strongly suggest backing up the underside bench nuts with washers. Otherwise there will be compression of the nut into the bench material, and ultimately result in loosening. This is actually very important… Use a fender (flat) washer next to the wood, and a star (locking) washer between the nut and the fender washer (stars face the nut underside), or use nuts with “nylock” inserts.

After mounting the press securely, keep it secure. Check all the fasteners especially after the first use. And, as just recommended, here’s where washers and locking fasteners help. As said, the washers help avoid the compression into a wooden benchtop that can otherwise ultimately lead to a lifetime of snugging down the bolts — they’re not tightening, they’re just pushing in deeper… The locking fasteners are resistant to stress-induced movement.

I have increasingly become a fan of using threaded retainers in place of nuts to screw the bolts to. This is a great means to secure things like case trimmers, powder meters, or anything else that might need to come on and then off the workbench area. Threaded inserts, such as t-nuts, remain in place on the bench top underside and the bolts are just run down into them. That makes it simple to mount and dismount with allenhead screws. Less benchtop clutter also.

t-nut and bolt
I’m a big fan of t-nuts for mounting accessories to a bench. When you need the tool — small press, case trimmer, or what-have-you, bring it out and snug it down with an allen-head bolt. Helps keep the benchtop less cluttered. I often mount the tool, like a case trimmer, to a piece of wood using t-nuts and then secure the whole thing to the bench top using a c-clamp.

Supply Items+
Shop rags work better than anything, and that’s why they’re used in shops. Sometimes the obvious is true. Get them at an auto parts store.

Invest in some good rust preventative and then use it. A lot of the tools we use don’t have any or adequate protective finishes on them, so give them a wipe-down after use. Local climate has a whopping lot to do with the need and frequency for this. Plus, there’s always going to be unforeseen times you’ll need to free a stuck fastener. Kroil-brand penetrating oil is the best I’ve used. Tip: Always grease contact points between steel and aluminum. If you don’t it will “freeze.”

Light is an asset, and, especially as eyes get older (dang I hate to say that, so let’s say the more and more someone needs bifocals and won’t get them) some magnification is a help too at times. It’s easy to find one of the clamp-on arm-style magnifying lights at most office supply stores, and even easier to locate a pair of reading glasses.

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

O Canada! Sniper Gains World Record

Facebooktwittergoogle_pluspinterestyoutube

A Canadian Special Forces [sic] sniper looks to have taken out an ISIS fighter from a world-record distance of 11,316 feet, or about 2.2 miles away.

Now, as shooters and reloaders, we know there are a myriad of details which went into making a shot like this successful. “The spotter would have had to successfully calculate five factors: distance, wind, atmospheric conditions and the speed of the earth’s rotation at their latitude,” Says Ryan Cleckner, a former U.S. Army Ranger who served several tours in Afghanistan, and wrote the “Long Range Shooting Handbook.”

Atmospheric conditions also would have posed a huge challenge for the spotter.

Cleckner says, “To get the atmospheric conditions just right, the spotter would have had to understand the temperature, humidity and barometric pressure of the air the round had to travel through.”

BUT WHAT ABOUT THE HARDWARE???

“While the ammunition that Canadian special forces use in the TAC-50 is “off-the-charts powerful,” with some 13,000 foot-pounds of force when it comes out of the muzzle, the speed of a bullet, a 750-grain Hornady round, is not as important as the aerodynamic efficiency of the bullet.”

Yes. You read it correctly. The rifle is great, the spotter was spot-on, the shooter held to his technique.

One of the largest factors was the bullet. A HORNADY bullet.

This Hornady.

“The key to having a sniper round travel that far and hit a small target has less to do with speed and more to do with the efficiency with which the projectile moves through the air,” he said.

“That’s because while sniper bullets exit the muzzle at several times the speed of sound they eventually slow down to less than the speed of sound, and at that point they become less stable. An efficiently designed bullet reduces that instability, he explained,” Says Michael Obel of Fox News.

“When it all comes together, it’s ‘mission accomplished’.”

Well done, soldier! We appreciate you essentially disrupting a deadly operation about to take place in Iraq by these barbarians.

We have to ask! What’s your longest shot?

Wanna start shooting like this warrior? We have a few boxes left of the legendary bullet . Click Here to stock up!

RELOADERS CORNER: Inside Reaming Vs. Outside Turning

Facebooktwittergoogle_pluspinterestyoutube

Some confuse these operations. Don’t! Here’s what each is, and isn’t…

Glen Zediker

I get a lot of questions. I always answer each one, and in doing so that experience reminds me of the wide span of topic knowledge needed to be a successful, and safe, handloader. I make an effort not to assume any level or depth of anyone’s understanding of any topic I might address. At the risk of “offending” all the experts out there by wasting their time with fundamental starts to technical pieces, I’d dang sho rather bore them than shortchange a newcomer out of elemental information.

I told folks in my last book that “grains” refers to a propellant weight, not a kernel-count. Right. But I’ve fielded that question more than once. That’s not, in my mind, a “stupid” question. Truth: The only stupid question is one that’s not asked, when there’s a need to know.

So, that was leading into this: Here’s a question I got just yesterday that sourced via someone who wasn’t even a little bit uneducated in the need for finer points of case prep. This fellow was confused about the relationship between inside case neck reaming and outside case neck turning. Here’s a longer version of the answer I returned to him —

First, there is no relationship between inside neck reaming and outside neck turning, and by that I mean they are not a combined process. As a matter of fact, these should not be combined!

They can be confused because they both ultimately accomplish the same thing, the same basic thing: each process removes material from a cartridge case neck cylinder, and that makes the case neck wall thinner. These two ops, however, are done for two different reasons.

neck reamer
Inside neck reaming is a treatment to thin excessively thickened case necks after several firings. If the neck walls get too thick, the outside diameter of the case neck might not have adequate room in the chamber to expand to release the bullet. Excess pressure! Shown is a Forster-brand accessory for its case trimmer.
IMPORTANT: “Standard” case neck reamers are for use only on fired but not resized cases! Exceptions are custom-size reamers, and I own a few of those that get use from time to time, but, as was said for tight-necked rifles, if you know about that then you already know about this…

An inside case neck reamer is intended to relieve excess material from case necks that have thickened excessively through use and reuse. Brass flows, and it flows forward.

Important! Most “standard” case neck reamers are intended to be used on fired, but not yet resized, cases! In other words: Use the reamer on the fired cases as-are. Do not use one on a case that’s had its neck resized because that will cut away way too much brass.

Another application where inside reaming is frequently recommended is in forming operations that require a reduction in case neck diameter. When a case is “necked down,” which means run through a sizing op that creates a .243 caliber from a previously .308 caliber, for instance, the neck walls thicken. An appropriately-sized reamer makes the shortest work of this tedious but necessary job. Most forming die packages either include or make mention of the specific-size reamer to use.

Outside case neck turning is done to improve the consistency of case neck wall thickness around the cylinder. It’s a step taken to improve accuracy. Outside case neck turning should be done only on brand new (unfired) brass. It’s more precisely effective and easier because that’s when the alloy is at its softest.

turned case neck
Outside neck turning is a “precision” case prep step that improves consistency of the case neck wall thicknesses. It can be done a little bit to clean up “high spots” and make the cases better, or full-area to make them nearly perfect. That, of course, also makes them universally thinner so your sizing apparatus might need to be dimensioned differently to maintain desired case neck inside diameter to retain adequate grip on the bullet.

There are specific, custom combinations that require a smaller than standard case neck outside diameter. The “tight-necked” rifle, which is just about exclusively encountered in Benchrest competition, has to have its brass modified to chamber in the rifle. The neck area of the rifle chamber is cut extra-small to provide a means to attain a “perfect” fit and minimal case neck expansion. If you’re into this, then you already knew that…

So, the primary role and use of an inside neck reamer is as a safety precaution; its secondary use is as a prep step in case forming. The primary role and use of an outside neck turner is to improve the consistency, quality, of a case neck cylinder. The idea is that more consistent wall thickness leads to a more centered case neck. And it does. Reaming does zero to improve consistency. Reaming just makes a bigger hole of the hole that’s already there; it doesn’t relocate its center.

drop test
The way (or one way) to tell if your cases need a ream is to take a fired case and see if a bullet will freely drop through the neck. If it won’t, they’re too thick. Thrown them away or refurbish them with a reamer. Resizing won’t change a thing.

Combining these ops might create a safety issue because the necks might get too thin, and that could mean there wouldn’t be enough grip on the bullet. Point is, ultimately, that reaming and turning are not equivalent even though they might seem to be doing the same thing. One is not a substitute for the other. It certainly would be possible to remove metal from the outside of the neck cylinder to overcome the effects of thickened necks, if (and only if) the neck is sized again using the usual die apparatus. When that’s the goal, though, a reamer is lower effort, faster, and less expensive to buy into.

Very important! Always (always) culminate either operation by running the cases a trip through the sizing die you normally use.

Check out a few tools at Midsouth HERE

RELOADERS CORNER: Barrel Twist Rate

Facebooktwittergoogle_pluspinterestyoutube

Understanding the relationship between bullets and barrel twist helps prevent mistakes. Here’s what you need to know…

Glen Zediker

Sierra 90gr MatchKing

Why am I devoting this space this time to such a topic? Well, because it’s commonly asked about, and, no doubt, because it influences some of the decisions and options faced in choosing the best-performing load for our needs. Making a mistake in choosing twist can limit both the selection and performance in the range of usable bullet weights and styles.

First, barrel twist rate is a component in the architecture of the barrel lands and grooves. The lands and grooves form a spiral, a twist, that imparts spin to a bullet, and the rate of twist is expressed in terms of how far in inches a bullet travels to make one full rotation. “1-10” (one-in-ten) for example means “one full rotation for each ten inches of travel.”

Bullet length, not weight, determines how much rotation is necessary for stability. Twist rate suggestions, though, are most usually given with respect to bullet weight, but that’s more of a generality for convenience’s sake, I think. The reason is that with the introduction of higher-ballistic-coefficient bullet designs, which are longer than conventional forms, it is easily possible to have two same-weight bullets that won’t both stabilize from the same twist rate.

70gr VLD
Good example: 70-grain VLD (left) needs an 8; the Sierra 69-grain MatchKing next to it does fine with a 9. It’s bullet length that determines the needed twist, not just weight.

The M-16/AR15 barrel changes give a good example. Short history of mil-spec twist rates: Originally it was a 1-12, which was pretty standard for .224-caliber varminting-type rounds, like .222 Remington, which were near-universally running bullet weights either 52- or 55-grain. That worked with the 55-grain FMJ ammo issued then. Later came the SS109 63-grain round, with a bullet that was a bit much for a 1-12. The military solution was total overkill: 1-7. That’s a very fast twist.

Commercially, the 1-9 twist became the standard for .223 Remington for years. It’s still popular, but is being replaced, as far as I can tell, by the 1-8. An increasingly wider selection of barrels are done up in this twist rate. I approve.

1-8 twist.
Generally, well, always actually, I recommend erring toward the faster side of a barrel twist decision. 8 is becoming a “new standard” for .224 caliber, replacing 9 in the process. Reason is that new bullets tend to be bigger rather than smaller. Don’t let a too-slow twist limit your capacity to exploit the promise of better long-range performance.

I’d always rather have a twist too fast than not fast enough. For a .223 Rem. 1-9 is not fast enough for anything longer than a routine 68-70-grain “magazine bullet,” like a Sierra 69gr MatchKing. 1-8 will stabilize any of the newer heavier bullets intended for magazine-box cartridge overall lengths, like a Sierra 77gr MatchKing. An 8 twist will also shoot most of the longer, higher-BC profiles, like the Sierra 80gr MatchKing (which is not intended to be assembled into a round that’s loaded down into a magazine).

Other popular calibers have likewise edged toward faster and faster “standard” twist rates, and that includes 6mm and .308. Once those were commonly found as 1-10 and 1-12, respectively, but now there’s more 1-7s and 1-9s offered. Reason is predictable: longer and heavier bullets, and mostly longer, have likewise become more commonly used in chamberings like .308 Winchester and 6XC.

The tell-tale for an unstable (wobbling or tumbling) bullet is an oblong hole in the target paper, a “keyhole,” and that means the bullet contacted the target at some attitude other than nose-first.

Base your next barrel twist rate decision on the longest, heaviest bullets you choose to use, and at the same time realize that the rate chosen has limited those choices. If the longest, heaviest bullet you’ll shoot (ever) is a 55-grain .224, then there’s honestly no reason not to use a 1-12. Likewise true for .308-caliber: unless you’re going over 200-grain bullet weight, a 1-10 will perform perfectly well. A rate that is a good deal too fast to suit a particular bullet may cause damage to that bullet (core/jacket integrity issues), and I have seen that happen with very light .224 bullets, like 45-grain, fired through, say, a 1-7 twist. At the least, with that great a mismatch you might not get the velocity up where it could be.

.224 bullet extremes
Clearly, these don’t need the same barrel twist to attain stability: the bigger bullet needs double the twist rate that will fully stabilize the smaller one. There’s quite an extreme range of .224-caliber bullets, like this 35-grain varmint bullet and 90-grain match bullet. Now. Do not fire the little bullet in the big bullet’s barrel! It probably would not make it to the target… Swap barrels and bullets and the big one will likely hit sideways.

Bullet speed and barrel length have an influence on bullet stability, and a higher muzzle velocity through a longer tube will bring on more effect from the twist, but it’s a little too edgy if a particular bullet stabilizes only when running maximum velocity. My failed 90-grain .224 experiment is a good example of that: I could get them asleep in a 1-7 twist 25-inch barrel, which was chambered in .22 PPC, but could not get them stablized in a 20-inch 1-7 .223 Rem. The answer always is to get a twist that’s correct.

Effects on the load itself? Yes, a little at least. There is a tad amount more pressure from a faster-twist barrel using the same load, and the reason is initial bullet acceleration is slower.

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

Step-By-Step Del-Ton AR-15 Kit Build Video

Facebooktwittergoogle_pluspinterestyoutube

By Ultimate Reloader:

Gavin at Ultimate Reloader shows you how easy it is to build an AR-15

Are you like me? Do you have a few spare AR-15 stripped lower receivers laying around that need rifles built from them? Now is a *great* time to build an AR-15 because component prices are low, and kits/parts are in stock! For years I’ve been wondering about Del-Ton kits, and I’d like to share with you my experiences building out an AR-15 rifle from one of Del-Ton’s kits!

Here’s a complete walk-through of my rifle build, complete with a quick range trip: (condensed build steps are just 7 minutes long!)

For a more in-depth look at the article, plus more of Gavin’s review, Click Here, and visit the Ultimate Reloader site!

Here are the complete specifications for this rifle: Del-Ton RKT100 from Midsouth Shooters Supply

For a look at the complete AR Build page at Midsouth Shooters Supply, Click Here!

I’m really liking this rifle, but I do have some upgrades planned, so stay tuned! Have you built a Del-Ton AR-15 rifle kit? I’d love to hear your experiences!

Thanks,
Gavin

 

John Vlieger Reviews Hornady HAP 9mm

Facebooktwittergoogle_pluspinterestyoutube

By John Vlieger:

The HAP (Hornady Action Pistol) bullet is the renowned XTP jacketed hollow point without the grooves cut into the jacket, simplifying the manufacturing process. What you end up with is an accurate,  consistent, and economically priced jacketed bullet. Reloading data is available for this bullet from multiple manufacturers, there’s no coating to shave off or exposed lead to worry about, and it doesn’t break the bank when you want to buy in bulk. In the video below I put the HAP 9mm bullets up against a few steel targets, and give you some more info. The sound on the video is a little muffled, due to a windy day at the range.

I load and shoot over 20,000 rounds of ammunition a year, so when I’m shopping for loading components, the main things I look for are economy, ease of use, and consistency. The Hornady 115 grain HAP bullet meets all of those requirements and more for competition and target shooting. 115 grain bullets are an industry standard for 9mm and most guns should be able to run them right out of the box, so using it as a go to bullet weight makes a lot of sense.

Midsouth now exclusively has the Hornady 9mm HAP bullets at plated bullet prices. Click Here to head over, load your own, and put them to the test!

Priced for Plinkers, Built for Pros!