Category Archives: Reloading Components



Correct primer ignition is a key to consistent velocities and good accuracy, and maybe even survival! Let’s make sure the primer pops proper. Read how…

Glen Zediker

Last two times we’ve looked at the tools and process of seating primers and also the thing itself. This time let’s take it another step and prefect the important step of priming a centerfire case.

primer pocket uniforming
Very important step, in my mind, in the reloading process: uniforming primer pockets.


As gone on about in the first article, it’s very important to seat each and every primer flush to the bottom of the cartridge case priming pocket. Tool choice has a whopping lot to do with how well attaining that goal can be reached, and that’s because it is a “feel” operation.

However! Probably the biggest asset to correct primer seating is a primer pocket that’s correctly dimensioned and correctly finished. And this, in effect, removes some of the importance or contribution of the “feel” needed and that’s because when the primer stops it will stop flat and flush. If the pocket is what it should be.

With the exception of a very few (and expensive) cases, the primer flash hole and the primer pocket itself are punched, not drilled and milled. That’s done, of course, in the interest of efficiency in producing the case. That manufacturing process, though, hain’t perfect.

Cross-section a case head and you’ll see that the inside bottom of the pocket is a little bowl-shaped; the corners aren’t square, which means the bottom of the pocket isn’t flat all across. Since the bottom of a primer cup is indeed flat, it’s way on better if these surfaces are a match.

primer pocket uniforming

A “primer pocket uniformer” fixes this to the same level it would be had it been machined: it will be at “blueprint” specs. A uniforming tool also sets pocket depth and will correct a shallow pocket. And again, the flat primer cup mated with an equally flat primer pocket bottom results in a truly well-seated primer.

In my estimation, I think this is an even more important procedure or preparation step for those using any automated or semi-automated priming process, such as encountered on a progressive-style press than it is for “precision” handloaders. In short: the less feel in the tool that’s available to guide you to know the primer has seated completely is offset a whopping lot by the assurance that flat-to-flat flush contact results pretty much just from running the press handle fully.

primer pocket uniforming tool
Primer pocket uniforming is done fastest and easiest with a tool that chucks into a drill. There are many available, and I recommend getting a “fixed” depth design. One thing: unlike virtually all other case-preparation steps, pocket uniforming is usually best one on once-fired, not new, brass. That’s because the pockets can be a little difficult for the tool to enter when the pockets are at their smallest, which they will be as new.

It’s another step, though, that adds time and tedium to the reloading process. Add power and it’s a lot easier, and, for the majority, has only to be done once. True, after enough firings a pocket will get shallower, and it will also be getting larger in diameter. Usually the increased diameter outruns the loss of depth in signaling the end of case life.

I use mine in place of a primer pocket cleaning tool. There is zero harm in running a uniformer each use for reloading. Uniformers are available as fixed- and adjustable-depth. I generally recommend getting a fixed tool, and then trusting it. Setting depth on an adjustable model is tedious, and critical. Too deep can weaken the case.

uniformed pocket
Here’s a little (important) something that you might notice after uniforming primer pockets. The case on the right shows very clear primer anvil impressions, and that’s because this primer was seated fully flush into a uniformed pocket; the case on the left was not uniformed and likewise the primer was not fully seated flush (couldn’t be).

If you’re wanting to load once-fired mil-spec cases, or have to load once-fired mil-spec cases, then the original primer crimp must be removed. A primer crimp is small lip of brass that’s pinched into the primer edge during the primer seating process. It holds the primer in place against inertia-induced movement that might unseat it. Now, you never ever need to worry about crimping your own ammunition. All that matters to us is removing the excess brass residual from the original crimp. The most simple, and fastest, way is using a primer pocket swaging tool. These are either press-mounted or stand-alone stations. Just run it, run it out, and the pocket has been swaged to unimpeded roundness again. It is possible to use a uniformer to remove crimp, but it’s a tool for another job and, almost always, it’s best to use specific tools for specific jobs. It’s a difficult chore with a uniformer, and the uniformer also may not smooth the entryway adequately.

primer pocket swaging tools
If you need to remove the crimp from mil-spec cases, get a swager. It’s the best tool for the job. They’re easy to use, and, as with other such processes, has only to be done once for the life of that case. After swaging, by all means run a uniformer if wanted. Check out tools HERE

Overall, get a swager and keep it simple. They’re not expensive, they’re easy to use, and, as with other such processes, has only to be done once for the life of that case. After swaging, by all means run a uniformer if wanted.

Should primer pockets be cleaned? Why not… There is probably no influence on accuracy if the pocket is dirty or spotless, but, why not… Deprime prior to case cleaning to get that area treated. I preach heavily on the virtues of a stand-along decapping station to keep grit out of the sizing die. A primer pocket cleaner is fast and easy to use, but, as mentioned, I instead just run a uniforming tool in its place.

As said a few times in this series, the most important thing is to know that the primers (all of them) have seated to at least slightly below flush with the case base. Just seeing that does, in no way, mean each primer is seated to perfection. There are variances in (un-uniformed) primer pocket depths. At the least, one more time, uniformed pockets will or sure should take a big step toward providing more certainty.

A “high” primer, one that’s not seated fully to the bottom of its pocket, results in a “soft” strike from the firing pin, and that’s because some of the inertia/energy in the speeding pin is siphoned away because it first will fully seat the primer… However! There’s another, even more important reason all primers should be seated fully: When used with a rifle having a floating-style firing pin, which is an AR15, the normal and unavoidable inertia-induced firing pin movement upon bolt closing will result in the firing pin tip contacting the primer. It will bounce or tap off the primer. If the primer is sitting out farther, there’s a greater likelihood of setting off the cap. That’s called a “slam-fire” and its aftermath ranges from shaken nerves to shrapnel infestations about the facial area.

AR15 firing pin indentation
Yikes! Here’s a round chambered and then pulled from one of my AR15s. Floating firing pins can “tap” off a primer, it’s intertia-induced. A more sensitive primer, and it could have gone off. This is not “supposed” to happen via rifle design, but, well, here it is. Make double-dang sure all the primers are seated below flush with the case head! It’s a problem with any floating-pin equipped rifle: M1A, M1, AR10, AR15. Primer composition matters. In this case, its resistance to detonation, and it should influence decisions on primer brands.

See what’s available at Midsouth HERE

The information in this article is from Glen’s newest book, Top-Grade Ammo, available HERE at Midsouth. Also check HERE for more information about this and other publications from Zediker Publishing.



Last time the tooling and process of seating a primer got detailed, and now more details about The Thing Itself. Read all about it…

primer close up

Glen Zediker

A primer consists of a brass (usually) cup filled with impact-detonated explosive compound, lead styphate specifically. Right. Primers explode. The compound starts as liquid, not that that matters, and while it’s still wet, a triangular metal piece called an “anvil” is positioned in the opening. When it’s hit by the firing pin, the center of the cup collapses, squeezing the explosive compound between the interior of the cup and the anvil. That ignites the compound and shoots a flame through the flash hole. That ignites the propellant.

There are two primer sizes, and then type variations. The two sizes are “small” and “large.” For example, .223 Rem. uses small, .308 Win. uses large. Rifle primers and pistol primers are not the same, even though they have diameters in common. Rifle primers have a tougher cup, and, usually, provide a hotter flash. Do not substitute pistol primers for rifle primers! Some pistol shooters using very high-pressure loads substitute rifle primers, but also often need to increase striker impact power.

Variations: There are small variations in primer dimensions, heights and diameters, and also variations exist in new-case primer pocket dimensions, among various brands, and, of course, lot-to-lot variations can and do exist within any one brand. Usually, these variations are not influential to suitability. Usually. However! On occasion, small diameter variations can affect how well different primers will feed through various make priming apparatus. This can and has become a hitch in some progressive loading machines. Cup height variations can lead to seating depth (primer height) issues.

Remington 7-1/2 primers
I have my “go-to” primer, as do most, but I’ve found best results in certain circumstances with another brand. I will not vary primers, though, in my tournament ammo for any one day: as with propellants and bullets, each leaves a different residue in the bore, and that will, not can, influence zero making the switch. In other words, I won’t use CCI for short-line loads, and Remington for 600-yard ammo, not on the same day.

There are also “magnum” primers. These have a hotter spark. They are engineered to deliver a stouter kick-off to larger, more dense columns of slower-burning propellant. They also work well with spherical-type propellants (less air space between the granules). There are also “match” primers. These ostensibly are more consistent quality. Not all manufacturers offer these options. If they do, unless you have a scheme or more carefully-considered reason, just go with what fits your application. There’s no need for match primers in blasting ammo. There are, no doubt (and no doubt significant) differences among varying brand primers with respect to “output.” As mentioned earlier on, there are also pretty well-known tendencies that are either more or less preferable among varying primer brands.

The primer is, in my experience, the greatest variable that can change the performance of a load combination, which is mostly to say “pressure.” Never (never ever) switch primer brands without backing off the propellant charge and proving to yourself how far to take it back up, or to even back it off more. Don’t deny this one.

I back off one full grain of propellant to try a different primer brand.

Finding the best-performing primer for any particular combination of cartridge, bullet, and propellant isn’t just always as easy as putting a “match” primer in there. I have my preference, and it’s what I try first, but, to be certain, sometimes best accuracy and consistency (related) come with another. Again, it’s a combination of propellant fill volume, burning rate, propellant type (single-base, double-base, extruded, or spherical), and column “packing” density that favors either a “hotter” or “cooler” flash.

Priming cup composition also factors mightily in my final choice, and that’s a big factor in some semi-autos. More next time.

primer tray
Here’s handy. A primer “flip” tray puts all the primers in the sams orientation and orients them for easy loading into a primer magazine feed tube for use in many automated systems. See what’s available at Midsouth HERE

Do be extra careful handling primers! No kidding. It’s the most explosive element in a cartridge, and it’s intended to be detonated from impact, so… Wearing safety glasses at the loading bench might seem nerdy, but it’s wise. Likewise, and this has happened way on more than once, but, fortunately, never yet to me, is a mass detonation of primers contained in a feeding device, such as a primer feeding magazine tube. Such circumstance is grave indeed. Progressive loading machines, as well as many bench-mounted appliances, use a tube magazine that contains the primers. This tube must be filled, like any magazine. Make sure you know when full is full, and don’t try to poke in one more. This is usually when “it” happens. Remember, primers are detonated via pressure. Said before, but important enough to say again now: Never (ever) attempt to more deeply seat a primer on a loaded round. And keep the priming cup (the tool part that holds the primer for seating) clear of all debris. I’ve heard tell of brass shavings, leftover tumbling media, and the like, getting between the primer and the tool cup, and forming its own little firing pin.

See what’s available at Midsouth HERE

The information in this article is from Glen’s newest book, Top-Grade Ammo, available HERE at Midsouth. Also check HERE for more information about this and other publications from Zediker Publishing.

New Hornady Products for 2018


Hornady has just announced their new products for 2018, from the much anticipated new reloading tools, to innovations in ammo and projectiles, Midsouth is eager to fill our shelves with their new offerings! Read on for a brief breakdown of what’s coming soon!

New in Reloading:

Cordless Vibratory Powder Trickler:

Some cool tools are on their way from Hornady MFG., like this Vibratory Trickler, which makes “quick work of various reloading chores!”

The Vibratory Trickler, powered by two AAA batteries, features variable settings to trickle all kinds of powders, ensuring the precise amount for each charge. Its modular design means you can use it with or without the base and also makes cleanup quick and easy.


  • Trickles all powders
  • Light-up LED screen
  • High, low, and variable trickle settings
  • Use in base or outside of base
  • Weighted for stability
  • No-slip base

Hornady Rotary Case Tumbler:

hornady rotary case tumbler

Clean and polish brass cartridge cases to a brilliant shine with the rotary action of this tumbler, coupled with its steel pin tumbling media (included). Use in conjunction with Hornady® One Shot® Sonic Clean Solution.

Six-liter drum holds 5 pounds of brass cases. Set tumbler to run for up to eight hours in half-hour increments using the digital timer.

Check out all the new items coming to our reloading category by clicking here!

New Projectiles:

Speaking of reloading, lets take a look at some of the new projectiles being developed by Hornady!

hornady dgx bonded bullets

DGX Bonded®

The DGX® Bonded (Dangerous Game™ eXpanding) bullet features a copper-clad steel jacket bonded to a lead core to provide limited, controlled expansion with deep penetration and high weight retention. Bonding the jacket to the core prevents separation from high-energy impact on tough material like bone, ensuring the bullet stays together for deep expansion.

DGX® Bonded bullets are built to the same profile as the corresponding DGS® (Dangerous Game™ Solid) bullets but expand to 1½ to 2 times their bullet diameter.

Thicker Jacket

The thicker 0.098” copper-clad steel jacket of DGX Bonded sets it apart from other dangerous game bullets, allowing it to tear through tough material like hide, muscle and bone.

Controlled Expansion

DGX Bonded features a flat nose with serrated sections to deliver a uniform expansion from 100 to 150 yards and straight penetration, reducing possible deflections.

Bonded Jacket and Core

The bonding process locks the jacket and lead core together, improving the retained weight of the expanded bullet.

ELD-X and ELD Match Bullets:

eld-x hornady bullets

There’s also a few new calibers coming to the ELD-X line of projectiles. The Extremely Low Drag – eXpanding bullets are a technologically advanced, match accurate, ALL-RANGE hunting bullet featuring highest-in-class ballistic coefficients and consistent, controlled expansion at ALL practical hunting distances. You can find them right here at Midsouth!

New Ammunition:

There’s some interesting complete cartridges coming out this next year, and a few to really examine will be the subsonic line, the 6.5 PRC, and the new line of .223 ammo called Frontier®

New 6.5 PRC

The Ultimate Trophy Magnet

The name says it all! The 6.5 Precision Rifle Cartridge was designed to achieve the highest levels of accuracy, flat trajectory and extended range performance in a sensibly designed compact package.

The name says it all! The 6.5 Precision Rifle Cartridge was designed to achieve the highest levels of accuracy, flat trajectory and extended range performance in a sensibly designed compact package.

Utilizing moderate powder charges that result in repeatable accuracy, low recoil and reasonable barrel life, the 6.5 PRC produces high velocities for target shooting with performance well beyond 1000 yards.

Rifle makers currently chambering the 6.5 PRC include GA Precision, Gunwerks, PROOF Research, Stuteville Precision and Seekins Precision. Check back often as additional gun manufacturers confirm chambering the 6.5 PRC.

There’s a lot more to cover, and information is still coming in daily on the new products announced for next year. Stay tuned for a more in depth look at these items as we get a chance to demo them.

RELOADERS CORNER: REALLY Understanding Case Neck Sizing


Determining and setting the correct case neck diameter is a critical, crucial step in the handloading process: Here’s all you need to know!

sizing die bushing

Glen Zediker

Here’s another I get (too many) questions about, and when I say “too many” that’s not at all a complaint, just a concern… This next hopefully will eliminate any and all confusions about this important step, and decision, in the reloading process.

Basics: A cartridge case neck expands in firing to release the bullet. If the load delivers adequate pressure, it can expand to the full diameter allowed by that portion of the rifle chamber. That diameter depends on the reamer used. After expansion and contraction, the case neck will, no doubt, be a bigger diameter than what it was before being fired.

Back to it: To get a handle on this important dimension, the first step is tools. As always. A caliper that reads to 0.001 inches will suffice.

You need to find three outside diameter numbers: fired case neck diameter, sized case neck diameter, loaded case neck diameter. If you know the loaded case neck diameter then it’s likewise easy to find out the case wall thickness, or at least an average on it if the necks aren’t perfectly uniform (and they won’t likely be unless they’ve been full-on outside case neck turned).

Case neck sizing diagram
“All the math” works in either direction. Here’s how.

A fired case neck has to be sized back down to a dimension that will retain a bullet from unwanted movement (slippage) in the reloaded round. Case neck “tension” isn’t really an accurate term, in my mind, so I prefer to talk about “constriction.” The reason is that making a case neck diameter smaller and smaller does not, after a point, add any additional grip to the bullet. Once it’s gotten beyond maybe 0.005 inches, it’s just increasing the resistance to bullet seating not increasing the amount of tension or retention of the case neck against the bullet. The bullet is resizing the case neck, and probably getting its jacket damaged in the process. If more grip is needed, that’s where crimping comes in…and that’s (literally) another story.

Always, always, account for the “spring-back.” That is in the nature of the alloy used to make cases. If brass is sized to a smaller diameter it will spring back plus 0.001 inches bigger than the tool used; if it’s expanded to a bigger diameter, it will spring back (contract) to 0.001 inches smaller than the tool used. This is always true! The exception is that as brass hardens with age, it can spring back a little more.

How much constriction should there be? For a semi-auto, 0.003 is adequate; I recommend 0.004. For a bolt-action, I use and recommend 0.002, and 0.001 usually is adequate unless the rifle is a hard-kicker. See, the main (main) influence of more resistance in bullet seating is to, as mentioned, set up enough gripping tension to prevent unwanted bullet movement. Unwanted movement can come from two main sources: contact and inertia. Contact is if and when the bullet tip meets any resistance in feeding, and gets pushed back. Intertia comes from the operation and cycling of the firearm. If there’s enough force generated via recoil, the bullets in rounds remaining in a magazine can move from flowing forces. However! That also works literally in the other way: in a semi-auto the inertial force transmitted through a round being chambered can set the bullet out: the case stops but the bullet keeps moving. I’ve seen (measured) that happen with AR15s and (even more) AR-10/SR-25s especially when loading the first round in. Put in a loaded magazine, trip the bolt stop, and, wham, all that mass moves forward and slams to a stop. Retract the bolt and out comes a case with no bullet… Or, more usually, out comes a case with the bullet seated out farther (longer overall length). Never, ever, set a constriction level on the lighter side for either of these guns.

Most seem to hold a belief that the lower the case neck constriction the better the accuracy. Can’t prove that by me or mine. If there’s too much constriction, as mentioned, the bullet jacket can be damaged and possibly the bullet slightly resized (depending on its material constitution) and those could cause accuracy hiccups. If it’s a semi-auto and constriction is inadequate, the likewise aforementioned bullet movement forward, which is very unlikely to be consistent, can create accuracy issues, no doubt. My own load tests have shown me that velocities get more consistent at 0.003-0.004 as compared to 0.001-0.002.

Benchrest competitors use virtually zero constriction, but as with each and every thing “they” do, it works only because it’s only possible via the extremely precise machining work done both in rifle chambering and case preparation. It is not, decidedly not, something anyone else can or should attempt even in an off-the-shelf single-shot. As always: I focus here, and in my books, on “the rest of us” when it comes to reloading tool setup and tactics. Folks who have normal rifles and use them in normal ways. And folks who don’t want to have problems.

So, find out what you have right now by determining the three influential diameters talked about at the start of this article. Most factory standard full-length sizing die sets will produce between 0.002 and 0.003 constriction. Getting more is easy: chuck up the expander/decapper stem in an electric drill (I use oiled emery cloth wrapped around a stone), and carefully reduce the expander body diameter by the needed amount, or contact the manufacturer to see about getting an undersized part. I’ve done that.

polish expander
It’s easy to increase case neck constriction if you’re running a conventional sizing die setup that incorporates an expander or sizing button. Just make the button diameter smaller; then it won’t open up the outside-sized case neck as much as it is withdrawn from the die and over the expander.

If you want less constriction than you’re currently getting, about the only way to do that one is hit up a local machinist and get the neck area in the die opened by the desired amount (considering always the 0.001 spring-back). Or get a bushing-style die…

Redding S Die
It’s not perfectly necessary to use an inside case neck expanding tool if you’re using a bushing-style die. I think it’s wise for a multitude of reasons I’ve gone on about in the past, and may should again, but if the math is carefully done, and the cases are all same lot, outside neck reduction will result in consistent inside case neck diameter sizing. Example: Case neck wall thickness is 0.012, outside sized case neck diameter is 0.246 (from using, remember, a 0.245 bushing), then the inside case neck diameter will be 0.222, and that will be a 0.002 amount of bullet constriction (0.224 caliber bullet).

The bushing-style design has removable bushings available in specific diameters. Pick the one you want to suit the brass you use. If you run an inside case neck expanding appliance along with a bushing die, usually a sizing-die-mounted “expander ball” or sizing button, make sure you’re getting at least 0.002 expansion from that device. Example: the (outside) sized case neck diameter should be sufficiently reduced to provide an inside sized case neck diameter at least 0.002 smaller than the diameter of the inside sizing appliance. That’s done as a matter of consistency and correctness that will account for small differences in case neck wall thicknesses. And when you change brass lots and certainly brands, measure again and do the math again! Thicker or thinner case neck walls make a big difference in the size bushing needed.

Check out a few ideas at Midsouth HERE

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit

O Canada! Sniper Gains World Record


A Canadian Special Forces [sic] sniper looks to have taken out an ISIS fighter from a world-record distance of 11,316 feet, or about 2.2 miles away.

Now, as shooters and reloaders, we know there are a myriad of details which went into making a shot like this successful. “The spotter would have had to successfully calculate five factors: distance, wind, atmospheric conditions and the speed of the earth’s rotation at their latitude,” Says Ryan Cleckner, a former U.S. Army Ranger who served several tours in Afghanistan, and wrote the “Long Range Shooting Handbook.”

Atmospheric conditions also would have posed a huge challenge for the spotter.

Cleckner says, “To get the atmospheric conditions just right, the spotter would have had to understand the temperature, humidity and barometric pressure of the air the round had to travel through.”


“While the ammunition that Canadian special forces use in the TAC-50 is “off-the-charts powerful,” with some 13,000 foot-pounds of force when it comes out of the muzzle, the speed of a bullet, a 750-grain Hornady round, is not as important as the aerodynamic efficiency of the bullet.”

Yes. You read it correctly. The rifle is great, the spotter was spot-on, the shooter held to his technique.

One of the largest factors was the bullet. A HORNADY bullet.

This Hornady.

“The key to having a sniper round travel that far and hit a small target has less to do with speed and more to do with the efficiency with which the projectile moves through the air,” he said.

“That’s because while sniper bullets exit the muzzle at several times the speed of sound they eventually slow down to less than the speed of sound, and at that point they become less stable. An efficiently designed bullet reduces that instability, he explained,” Says Michael Obel of Fox News.

“When it all comes together, it’s ‘mission accomplished’.”

Well done, soldier! We appreciate you essentially disrupting a deadly operation about to take place in Iraq by these barbarians.

We have to ask! What’s your longest shot?

Wanna start shooting like this warrior? We have a few boxes left of the legendary bullet . Click Here to stock up!



Understanding the relationship between bullets and barrel twist helps prevent mistakes. Here’s what you need to know…

Glen Zediker

Sierra 90gr MatchKing

Why am I devoting this space this time to such a topic? Well, because it’s commonly asked about, and, no doubt, because it influences some of the decisions and options faced in choosing the best-performing load for our needs. Making a mistake in choosing twist can limit both the selection and performance in the range of usable bullet weights and styles.

First, barrel twist rate is a component in the architecture of the barrel lands and grooves. The lands and grooves form a spiral, a twist, that imparts spin to a bullet, and the rate of twist is expressed in terms of how far in inches a bullet travels to make one full rotation. “1-10” (one-in-ten) for example means “one full rotation for each ten inches of travel.”

Bullet length, not weight, determines how much rotation is necessary for stability. Twist rate suggestions, though, are most usually given with respect to bullet weight, but that’s more of a generality for convenience’s sake, I think. The reason is that with the introduction of higher-ballistic-coefficient bullet designs, which are longer than conventional forms, it is easily possible to have two same-weight bullets that won’t both stabilize from the same twist rate.

70gr VLD
Good example: 70-grain VLD (left) needs an 8; the Sierra 69-grain MatchKing next to it does fine with a 9. It’s bullet length that determines the needed twist, not just weight.

The M-16/AR15 barrel changes give a good example. Short history of mil-spec twist rates: Originally it was a 1-12, which was pretty standard for .224-caliber varminting-type rounds, like .222 Remington, which were near-universally running bullet weights either 52- or 55-grain. That worked with the 55-grain FMJ ammo issued then. Later came the SS109 63-grain round, with a bullet that was a bit much for a 1-12. The military solution was total overkill: 1-7. That’s a very fast twist.

Commercially, the 1-9 twist became the standard for .223 Remington for years. It’s still popular, but is being replaced, as far as I can tell, by the 1-8. An increasingly wider selection of barrels are done up in this twist rate. I approve.

1-8 twist.
Generally, well, always actually, I recommend erring toward the faster side of a barrel twist decision. 8 is becoming a “new standard” for .224 caliber, replacing 9 in the process. Reason is that new bullets tend to be bigger rather than smaller. Don’t let a too-slow twist limit your capacity to exploit the promise of better long-range performance.

I’d always rather have a twist too fast than not fast enough. For a .223 Rem. 1-9 is not fast enough for anything longer than a routine 68-70-grain “magazine bullet,” like a Sierra 69gr MatchKing. 1-8 will stabilize any of the newer heavier bullets intended for magazine-box cartridge overall lengths, like a Sierra 77gr MatchKing. An 8 twist will also shoot most of the longer, higher-BC profiles, like the Sierra 80gr MatchKing (which is not intended to be assembled into a round that’s loaded down into a magazine).

Other popular calibers have likewise edged toward faster and faster “standard” twist rates, and that includes 6mm and .308. Once those were commonly found as 1-10 and 1-12, respectively, but now there’s more 1-7s and 1-9s offered. Reason is predictable: longer and heavier bullets, and mostly longer, have likewise become more commonly used in chamberings like .308 Winchester and 6XC.

The tell-tale for an unstable (wobbling or tumbling) bullet is an oblong hole in the target paper, a “keyhole,” and that means the bullet contacted the target at some attitude other than nose-first.

Base your next barrel twist rate decision on the longest, heaviest bullets you choose to use, and at the same time realize that the rate chosen has limited those choices. If the longest, heaviest bullet you’ll shoot (ever) is a 55-grain .224, then there’s honestly no reason not to use a 1-12. Likewise true for .308-caliber: unless you’re going over 200-grain bullet weight, a 1-10 will perform perfectly well. A rate that is a good deal too fast to suit a particular bullet may cause damage to that bullet (core/jacket integrity issues), and I have seen that happen with very light .224 bullets, like 45-grain, fired through, say, a 1-7 twist. At the least, with that great a mismatch you might not get the velocity up where it could be.

.224 bullet extremes
Clearly, these don’t need the same barrel twist to attain stability: the bigger bullet needs double the twist rate that will fully stabilize the smaller one. There’s quite an extreme range of .224-caliber bullets, like this 35-grain varmint bullet and 90-grain match bullet. Now. Do not fire the little bullet in the big bullet’s barrel! It probably would not make it to the target… Swap barrels and bullets and the big one will likely hit sideways.

Bullet speed and barrel length have an influence on bullet stability, and a higher muzzle velocity through a longer tube will bring on more effect from the twist, but it’s a little too edgy if a particular bullet stabilizes only when running maximum velocity. My failed 90-grain .224 experiment is a good example of that: I could get them asleep in a 1-7 twist 25-inch barrel, which was chambered in .22 PPC, but could not get them stablized in a 20-inch 1-7 .223 Rem. The answer always is to get a twist that’s correct.

Effects on the load itself? Yes, a little at least. There is a tad amount more pressure from a faster-twist barrel using the same load, and the reason is initial bullet acceleration is slower.

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit

John Vlieger Reviews Hornady HAP 9mm


By John Vlieger:

The HAP (Hornady Action Pistol) bullet is the renowned XTP jacketed hollow point without the grooves cut into the jacket, simplifying the manufacturing process. What you end up with is an accurate,  consistent, and economically priced jacketed bullet. Reloading data is available for this bullet from multiple manufacturers, there’s no coating to shave off or exposed lead to worry about, and it doesn’t break the bank when you want to buy in bulk. In the video below I put the HAP 9mm bullets up against a few steel targets, and give you some more info. The sound on the video is a little muffled, due to a windy day at the range.

I load and shoot over 20,000 rounds of ammunition a year, so when I’m shopping for loading components, the main things I look for are economy, ease of use, and consistency. The Hornady 115 grain HAP bullet meets all of those requirements and more for competition and target shooting. 115 grain bullets are an industry standard for 9mm and most guns should be able to run them right out of the box, so using it as a go to bullet weight makes a lot of sense.

Midsouth now exclusively has the Hornady 9mm HAP bullets at plated bullet prices. Click Here to head over, load your own, and put them to the test!

Priced for Plinkers, Built for Pros!

D.I.Y. Case Lube


Make Your Own Case Lube

Over the years, I’ve used quite a bit of spray lube for case sizing, most of the time Hornady One-Shot for pistol, and Dillon DCL for rifle. As my supply of Dillon DCL dwindled, I started looking at other options. Dillon DCL has worked well, but leaves a sticky residue that’s hard to wipe (or tumble) off the cases. Then I talked with the 6.5 guys who swore by (not at) their home brew lanolin case lube (a formula they found online if memory serves).

Per the 65guys instructions, I ordered the same components and spray bottles, and these worked out great:

As shown in the video, I found the following process to work well:

  • Draw a line marked “alcohol” 4″ up from the bottom of the spray bottle.
  • Draw a line marked “lanolin” .4″ up from the alcohol line.
  • Fill the bottle with 99% isopropyl alcohol up to the alcohol line.
  • Pour lanolin into the bottle until the fluid level is at the lanolin line.
  • Gently shake/tip to mix until there’s no lanolin at the bottom of the bottle.

That’s it! Your case lube is ready to use! Just put some brass in a bin, spray, re-arrange, spray again, then wait 5 minutes for a quick flash-dry. Hope you find this useful!

Anyone else out there using homemade lanolin case lube? Please share your experiences!


Ultimate Reloader: .25-45 Sharps AR-15 Part 6: LEE .25-45 Sharps Dies Overview


By Gavin Gear, Ultimate Reloader

lee .25-45 sharps dies

One of the challenges with picking up a “new” cartridge to reload is finding the right dies at the right price. .25-45 Sharps is becoming more popular with AR-15 shooter and reloaders, and the industry is responding with new products that give reloaders more options. One such example is the new .25-45 Sharps dies from LEE. This “Pacesetter” die set includes a full-length sizer/de-primer, a dead-length bullet seater, and a Factory Crimp Die- everything you need to form .25-45 Sharps brass and reload .25-45 Sharps ammunition for your AR-15. These dies are “Very Limited Production” – but I’ll note that Midsouth Shooters Supply has these dies for ~$35. and they are in stock as of today! That’s about 1/2 what other .25-45 Sharps die sets cost!

If you are curious about LEE rifle dies, I posted an in-depth write-up that covers pretty much every detail you can think of. I also posted the following in-depth write-up that covers .25-45 Sharps precision reloading from start to finish, a great resource if you are going to use these LEE dies to load .25-45 Sharps:

.25-45 Sharps AR-15 Part 5: Precision Loads with the MEC Marksman

As noted in that article, I found once again when testing the LEE dies how critical it is to chamfer case mouths after forming brass as pictured here:

time to chamfer and debur!

The cartridges I loaded with the LEE dies turned out great, and of course I tested my sizing/forming die setup with my L.E. Wilson case gage to make sure dimensions were correct.

time to break out the l.e. wilson gauges

I can’t wait to shoot some of the ammunition loaded with these LEE Pacesetter .25-45 Sharps dies- I’ll keep you all posted with how they work out!


Reloaders Corner: Coated Bullets


Bullet coatings promise better performance, but are they the right choice for you? Find out.

Glen Zediker

There are a few bullet coatings available, and Moly (MoS2: molybdenum-disulfide) is the best known, and also the most notorious. More in a bit.

moly coated bulets
Molybdenum Disulfide is the most popular bullet coating. It has exceedingly positive effects on performance, but there are may be some serious consequences for the uninformed user. Without correct (and frequent) cleaning, it can cause long-term damage to a barrel. Use it as outlined in this article and the extra speed and improved accuracy can pay back big to a serious shooter.

First, here’s how and why bullet coating works: Fire a coated bullet and a bare bullet using the same propellant charge. The coated bullet will go slower. However. The pressure will be lower. The reason is easy to figure: the increased lubrication reduces friction, resistance to movement, especially upon entry into the bore. It gets kind of a head start. The deal is that the pressure drops relatively more than the bullet speed, so, the bullet speed can be increased by adding more propellant and still have the same level of pressure. Win. Win. And, since there’s what amounts to a barrier between the bullet jacket and the barrel steel, the promise of more accurate rounds between cleanings is all true too. The bullet jacket isn’t leaving much of itself behind on the bore.

Among competitive shooters there was a huge shift toward coated bullets a few years back, but they’ve since fallen from favor for many. It wasn’t because they don’t perform well, because they do, but there are ancillary, and important, liabilities. Mostly: moly-coated bullets can corrode barrel steel, including stainless. Molybdenum disulfide outgases (outgas is the release of an occluded gas vapor that was part of the compound; a state change, pretty much) at temperatures lower than firing temperatures, and that creates a residue that, when mixed with water (moisture from condensation included, like what happens after firing), is pretty much sulfuric acid. Yikes. Right. If a moly-coated barrel is cleaned (correctly) each use, no problems. But one of the big draws is the potential to get literally hundreds of rounds, on zero, before the barrel needed cleaning. After a conventional cleaning (solvent and brush) it also takes time, which is rounds through the barrel, before zero will return.

I am a fan of coated bullets, and they’ve convincingly demonstrated their superiority to me after many thousands of rounds reaping rewards from the ballistic advantages. The improvement can be significant, and some bullets in particular escalate in performance more than others. Shorter bearing surface designs, by my notes, get that much more additional speed with no pressure trade-offs. Coating seems to have a disproportionately positive effect on thinner-skinned bullets, for reasons that likewise are clear. The effect here is smaller group sizes. Anything with a “J4” jacket responds well to coating (common in custom bullets).

My solution to the worries about moly was, as suggested, simply to clean the barrel each time back from the range and, also, to change my cleaning method to better accommodate the residue composition. More in a bit.

I don’t use moly any more, though. I’ve switched to Boron Nitride (BN) because it has all the advantages with none of the drawbacks, so far. BN is virtually the same in its effects as moly, based on my notes (same level of velocity drop and subsequent future increase). It’s easy to apply using a vibratory-style case cleaner.

BN coated bullet
This is a Boron-Nitride-coated bullet (right) compared to a bare bullet. BN is clear, slick, and doesn’t cause the chemical reactions other coatings are notorious for. It’s what I use.

I do not recommend any sort of lubrication inside a barrel, not for a promise of increased bullet performance. PFTE, for instance, has been touted as a great “break-in” agent for a barrel. Some use it after each cleaning to prep a barrel. Well. When it outgases, and it does outgas, it releases fluorine, a very powerful eater of all things metal.

Cleaning: Don’t use copper solvent with moly! The ingredients don’t mix well. Use only petroleum-based solvent. I switched to Kroil pentrating oil in conjuction with something like USP Bore Paste, JB Bore Compound, or similar (abrasive paste-type formulations). No room here now to convince anyone that abrasives are a safe and wise choice, but used correctly they are both. “Correctly” means a rod guide, stainless-steel rod, and keeping the rod shaft clean each pass. With that combination the bore is being protected against corrosion and the residues get gone, and, of huge importance, zero returns right away.

moly coated barrel cleaning
Bullet coating leaves an entirely different residue that conventional cleaners might not be effective on, and there’s also some chemistry involved that can inadvertently create big problems. I’ve had best results, all around, with a combination of micro-penetrating oil and abrasive paste. Keep the rod clean and feed it through a rod guide using abrasives and there’ll be no damage done.

Last on this: Just in the same as how I do not recommend “mixing” bullets or propellants through the same barrel, same day, coatings are pretty much the same. Zero will, not can, change for the number of rounds it takes to “re-season” the barrel. If you use it, use it.

I’ve seen great gaps in the quality of coated bullet finishes. Factory-coated bullets are the way to go. It’s tough to get a good job at home, and the reason is the carnuba wax application is temperature sensitive, and also because commercial coaters use industrial-level tumblers to apply the powder. The wax is necessary to avoid a smudgy mess just from handling the bullets. If you want to do it yourself, make sure the bullets are cleaned before application. Likewise, moly can build up in a bullet seating die so clean it out every now and again.

BN Coating Kit
BN can be applied easily using a vibratory tumbler and the contents shown. Put the BN powder in the bottle with the bullets, run the bottle in a vibratory cleaner for a spell, and that’s that. Check HERE for more information on bullet coating.

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit