Category Archives: Reloading Corner

RELOADERS CORNER: REALLY Understanding Case Neck Sizing

Facebooktwittergoogle_pluspinterestyoutube

Determining and setting the correct case neck diameter is a critical, crucial step in the handloading process: Here’s all you need to know!

sizing die bushing

Glen Zediker

Here’s another I get (too many) questions about, and when I say “too many” that’s not at all a complaint, just a concern… This next hopefully will eliminate any and all confusions about this important step, and decision, in the reloading process.

Basics: A cartridge case neck expands in firing to release the bullet. If the load delivers adequate pressure, it can expand to the full diameter allowed by that portion of the rifle chamber. That diameter depends on the reamer used. After expansion and contraction, the case neck will, no doubt, be a bigger diameter than what it was before being fired.

Back to it: To get a handle on this important dimension, the first step is tools. As always. A caliper that reads to 0.001 inches will suffice.

You need to find three outside diameter numbers: fired case neck diameter, sized case neck diameter, loaded case neck diameter. If you know the loaded case neck diameter then it’s likewise easy to find out the case wall thickness, or at least an average on it if the necks aren’t perfectly uniform (and they won’t likely be unless they’ve been full-on outside case neck turned).

Case neck sizing diagram
“All the math” works in either direction. Here’s how.

A fired case neck has to be sized back down to a dimension that will retain a bullet from unwanted movement (slippage) in the reloaded round. Case neck “tension” isn’t really an accurate term, in my mind, so I prefer to talk about “constriction.” The reason is that making a case neck diameter smaller and smaller does not, after a point, add any additional grip to the bullet. Once it’s gotten beyond maybe 0.005 inches, it’s just increasing the resistance to bullet seating not increasing the amount of tension or retention of the case neck against the bullet. The bullet is resizing the case neck, and probably getting its jacket damaged in the process. If more grip is needed, that’s where crimping comes in…and that’s (literally) another story.

IMPORTANT
Always, always, account for the “spring-back.” That is in the nature of the alloy used to make cases. If brass is sized to a smaller diameter it will spring back plus 0.001 inches bigger than the tool used; if it’s expanded to a bigger diameter, it will spring back (contract) to 0.001 inches smaller than the tool used. This is always true! The exception is that as brass hardens with age, it can spring back a little more.

How much constriction should there be? For a semi-auto, 0.003 is adequate; I recommend 0.004. For a bolt-action, I use and recommend 0.002, and 0.001 usually is adequate unless the rifle is a hard-kicker. See, the main (main) influence of more resistance in bullet seating is to, as mentioned, set up enough gripping tension to prevent unwanted bullet movement. Unwanted movement can come from two main sources: contact and inertia. Contact is if and when the bullet tip meets any resistance in feeding, and gets pushed back. Intertia comes from the operation and cycling of the firearm. If there’s enough force generated via recoil, the bullets in rounds remaining in a magazine can move from flowing forces. However! That also works literally in the other way: in a semi-auto the inertial force transmitted through a round being chambered can set the bullet out: the case stops but the bullet keeps moving. I’ve seen (measured) that happen with AR15s and (even more) AR-10/SR-25s especially when loading the first round in. Put in a loaded magazine, trip the bolt stop, and, wham, all that mass moves forward and slams to a stop. Retract the bolt and out comes a case with no bullet… Or, more usually, out comes a case with the bullet seated out farther (longer overall length). Never, ever, set a constriction level on the lighter side for either of these guns.

Most seem to hold a belief that the lower the case neck constriction the better the accuracy. Can’t prove that by me or mine. If there’s too much constriction, as mentioned, the bullet jacket can be damaged and possibly the bullet slightly resized (depending on its material constitution) and those could cause accuracy hiccups. If it’s a semi-auto and constriction is inadequate, the likewise aforementioned bullet movement forward, which is very unlikely to be consistent, can create accuracy issues, no doubt. My own load tests have shown me that velocities get more consistent at 0.003-0.004 as compared to 0.001-0.002.

Benchrest competitors use virtually zero constriction, but as with each and every thing “they” do, it works only because it’s only possible via the extremely precise machining work done both in rifle chambering and case preparation. It is not, decidedly not, something anyone else can or should attempt even in an off-the-shelf single-shot. As always: I focus here, and in my books, on “the rest of us” when it comes to reloading tool setup and tactics. Folks who have normal rifles and use them in normal ways. And folks who don’t want to have problems.

So, find out what you have right now by determining the three influential diameters talked about at the start of this article. Most factory standard full-length sizing die sets will produce between 0.002 and 0.003 constriction. Getting more is easy: chuck up the expander/decapper stem in an electric drill (I use oiled emery cloth wrapped around a stone), and carefully reduce the expander body diameter by the needed amount, or contact the manufacturer to see about getting an undersized part. I’ve done that.

polish expander
It’s easy to increase case neck constriction if you’re running a conventional sizing die setup that incorporates an expander or sizing button. Just make the button diameter smaller; then it won’t open up the outside-sized case neck as much as it is withdrawn from the die and over the expander.

If you want less constriction than you’re currently getting, about the only way to do that one is hit up a local machinist and get the neck area in the die opened by the desired amount (considering always the 0.001 spring-back). Or get a bushing-style die…

Redding S Die
It’s not perfectly necessary to use an inside case neck expanding tool if you’re using a bushing-style die. I think it’s wise for a multitude of reasons I’ve gone on about in the past, and may should again, but if the math is carefully done, and the cases are all same lot, outside neck reduction will result in consistent inside case neck diameter sizing. Example: Case neck wall thickness is 0.012, outside sized case neck diameter is 0.246 (from using, remember, a 0.245 bushing), then the inside case neck diameter will be 0.222, and that will be a 0.002 amount of bullet constriction (0.224 caliber bullet).

The bushing-style design has removable bushings available in specific diameters. Pick the one you want to suit the brass you use. If you run an inside case neck expanding appliance along with a bushing die, usually a sizing-die-mounted “expander ball” or sizing button, make sure you’re getting at least 0.002 expansion from that device. Example: the (outside) sized case neck diameter should be sufficiently reduced to provide an inside sized case neck diameter at least 0.002 smaller than the diameter of the inside sizing appliance. That’s done as a matter of consistency and correctness that will account for small differences in case neck wall thicknesses. And when you change brass lots and certainly brands, measure again and do the math again! Thicker or thinner case neck walls make a big difference in the size bushing needed.

Check out a few ideas at Midsouth HERE

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

RELOADERS CORNER: 5 Simple Steps To M1A Reloading Success

Facebooktwittergoogle_pluspinterestyoutube

The M14/M1A can be a cantankerous beast to reload for, so follow these suggestions to tame it down. Keep reading…

M14 match shooter

Glen Zediker

The “5 steps to success” are at the end of this article… First, read about why they will matter as much as they do!

A couple times back I decided that the best topic to write about might be the most current, and I defined that by the most recent questions I fielded on a topic. As the assumption goes: they can’t be the only ones with that question… So, over this weekend I had a series of questions from different people all on the topic of reloading for the M1A, the civilian version of the military M14.

Now. Since the M14 was the issue rifle of choice for a good number of years, and without a doubt the (previously at least) favored platform for the various-branch military shooting team efforts, it went through some serious modifications to best suit it to that very narrow-use objective: High Power Rifle competition. Although the M14 hadn’t been routinely issued to most troops for decades, it was still going strong in this venue. That changed in the mid-90s when Rules changes boosted the AR15 platform to prominence, and soon after, dominance.

Match conditioning an M14 involved modifications to virtually every system component, and resulted in a fine shooting rifle. Very fine. Amazingly fine. The one mod that prodded the impetus to write all this next was the barrel chambering specification changes. A while back I went on about what 7.62 NATO is compared to its fraternal twin .308 Winchester.

Match-spec M14 chambers are decidedly NOT NATO! They’re .308 Winchester, pretty much. I say “pretty much” because they’re on the minimum side, dimensionally, compared to SAAMI commercial guidelines for .308 Win. Lemmeesplain: the true “match” M14 chamber is short, in throat and in headspace. The reason is ammunition bound. I’ll explain that too: Lake City Match ammo was and is a universal competition cartridge. Military teams compete in, well, military team competitions. Some are open to civilians, some are not. All, however, used issued ammo across the board. You were given your boxes of Lake City Match, or Special Ball, or one of a couple other same-spec variants, prior to the show and that’s what you used for the event. Everyone used the same ammo. Civilian or Service. There were exceptions, like long-range specialty events, but what was said held true the vast majority of the time. That meant that everyone wanted the same well-proven chamber, civilians too.

Lake City Match ammo
Back in the day… Here’s what you got, which was the same as what everyone else got, for a DCM (now CMP Inc.) rifle tournament. “Here ya go son, and good luck…” and since we took as much luck out of the equation as possible, we all used a rifle chamber in our M14s and M1As that maximized Lake City Match ammo performance. And that’s why I’m writing all this…

Given this, that’s why a “match” M1A chamber is different than a SAAMI. It was built to maximize Lake City Match accuracy. That’s a short round. The headspace is a few thousandths under what’s common on a chamber based around commercial .308 brass. 1.630-inch cartridge headspace height is regarded as minimum for commercial.

Headspace reading Lake City Match
The true M14/M1A match chamber is a short chamber: headspace is very tight. That’s because Lake City Match ammo is short. Compare this to what you might want to use, and if you have a genuine match chamber, best make sure the ammo fits… Measure both the results of sizing operations and also any new ammo or brass before you fire it in one of these chambers! I have encountered commercial .308 Win. rounds that were too long out of the box (cartridge case headspace dimensions). Here’s a cartridge headspace read on a Lake City Match compared to a commercial Winchester match load (inset) I had on hand. Read taken with a zeroed Hornady LNL gage. And NEVER fire commercial ammo intended for hunting use; the component mix and round structure is almost certain to be wrong.

Check out  headspace gages  at Midsouth HERE

So sizing a case to fit a match M1A, especially if it’s a hard-skinned mil-spec case, takes some crunch. To compound difficulty, M1As and M14s unlock very (very) quickly during firing. The bolt is trying to unlock when the case is still expanded against the chamber walls. The little bit of space this creates results in a “false” headspace gage reading on the spent case. It’s going to measure a little longer than the chamber is actually cut. That can lead someone to do the usual math (comparing new case and spent case headspace reads) and end up with a “size-to” figure that’s too tall, that has the shoulder too high. For instance, let’s say the spent case measured 1.634 and the new case measured 1.627, indicating 0.006 expansion or growth. Given the usual advice (from me at least) to reduce fired case shoulder height by 0.004 (semi-autos) for safe and reliable reuse would net a size-to dimension of 1.630. But. There can easily be a “missed” 0.002-0.003 inches resultant from the additional expansion explained earlier. My advice for a match-chambered M1A is to reduce the fired case all the way back down to the new case dimension. That might sound like a lot, and it might sound excessive, and it might be — but, it’s the proven way to keep this gun running surely and safely. That, however, is not always an easy chore. Some mil-spec brass is reluctant to cooperate. And, by the way, don’t kid yourself about reducing case life. This gun eats brass; I put just three loads through a case before canning it.

M14 gas system
These rifles have an overactive gas system that tends to create premature bolt unlocking, and this leads to excessive case expansion. I recommend resetting the fired case headspace to match a new case reading for safety’s sake.

Two helps: one is to use petroleum-based case lube, like Forster Case Lube or Redding/Imperial Sizing Wax. And size each case twice! That’s right: run each one fully into the die twice. Double-sizing sure seems to result in more correct and more consistent after-sizing headspace readings.

A “small-base” sizing die (reduced case head diameter) is not necessary to refit match brass into a match chamber. It might help using brass that was first-fired in a chamber with more generous diameter, but sized diameter isn’t really the “small” part of the M1A match chamber. Again, the small part is the headspace.

Forster National Match dies
A Forster “National Match” die set is a guaranteed way to ensure adequate sizing for an M1A match chamber. This sizing die has additional shoulder “crunch” built in, and that’s the “National Match” part: it essentially replicates Lake City Match ammo dimensions.

Take a look at these dies HERE

So that’s the source the problem reloading for this rifle. And, again, “this rifle” is an M1A with a true mil-match armorer’s spec chamber. We best make sure that our sized cases are going to fit the chamber, plus a couple thousandths clearance for function and safety. And safety mostly. M1As are notorious for “slam-fires” which happen when the free-floating firing pin taps the primer on a chambering round delivering sufficient intrusion to detonate. Impressive explosions result. If the case shoulder is stopping against the chamber before the bolt can lock over, that can be all the pin needs to maximize the effect of its inertia.

Speaking of, there are three sources and fortunately the same number of cures for slam-fires. One, first, is the correct sizing on setting back the case shoulder so the shoulder doesn’t stop against its receptacle in the chamber. Next is making sure there are no “high” primers; each primer should be seated at least 0.005 inches under flush with the case head. Next, and very important: primer composition, which equates to primer brand. Do not use a “sensitive” primer, one with a thinner, softer skin. Although they are great performers, Federal 205 are too sensitive for this rifle. Better are WW, CCI 200.

My thoughts
I don’t like this chamber… I also used one because I competed in events with issued ammo. I don’t recommend a “true” M14 chamber because that’s a NATO. Plain old standard .308 Win. specs work better and allow more flexibility in ammo and component selection. Even though the true mil-spec match chambers are not common, the reason I’ve written as much as I have on this topic over the years is because a mistake can be disastrous. One of the folks who wrote me one question shared a story about a friend who blew up his match M1A firing improper commercially-loaded ammo through it. Whoa.

A CASE FOR THE M1A
This gun needs a stout case. They won’t last long no matter what but they might not last at all if they’re too soft. I’ve broken some new commercial cases on one firing. Thicker/thinner isn’t the issue: it’s the hardness of the alloy. Harder material better resists reaction to the additional stress of premature system operation. New-condition mil-spec cases are great, if you can get them. Next best is Lake City Match that was fired in a match-chambered rifle. Stay completely away from anything, and everything, fired through a NATO-spec chamber. It’s nigh on not possible to size them enough to suit. For me, WW is the only commercial case I will run through my M1A. They’re thin, but pretty hard.

308 components
Here’s a full component set I recommend, and use, for true match chambered M1As.

I did a whole chapter solely on reloading for the M14/M1A for my book Handloading for Competition that didn’t get printed into it for various reasons. However! I have the entire chapter available as a PDF download on my website. Get it HERE

And for even more info on reloading for the  M1A, order the new book Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

 

M14 loading dos/donts

RELOADERS CORNER: Shop Setup Savvy

Facebooktwittergoogle_pluspinterestyoutube

Don’t overlook details when setting up shop. Here are a few ideas on dealing with a few tools and tasks to get set up to reload.

bolts and fasteners

Glen Zediker

Set-Up Tools
Time after time, point after point, I address the use of specific tools used in the process of loading ammunition. There are a few tools that never get near a cartridge case or bullet, though, that matter much to contentment. These are the “set-up” tools and appliances that when needed are indispensable. And, as with the loading tools themselves, making the better choices pays off. I joke with myself sometimes that I spend about as much time at auto parts and hardware stores as I do reloading industry outlets…

Get real wrenches for all the dies and tools you own. It’s worth the investment to buy a quality combo wrench at an auto-parts store rather than buggering up all your fasteners with a set of slip-lock pliers. But. You need those too. Everyone needs a slip-joint pliers, like Channellock-brand, but avoid using it whenever possible. Again, correctly-sized quality wrenches won’t muck up your die parts.

craftsman wrenches
Good quality wrenches are a necessity, in my mind. Craftsman fits that bill nicely.

A good quality set of allen wrenches, or hex-heads, likewise is a relative joy to use next to the el-cheapo versions that come with the tools. Get the ball-end kind for even easier use.

reloading bench
I’m sho no carpenter, but after working with handloading enough, a fellow will develop a few essential skills. A few tools to purchase: appropriate sized drill bits for starting screw holes (never don’t drill a hole beforehand); appropriate drill bits for press mounting, usually 1/4 inch, and the kind with a starter point are the bomb; a corded drill, not cordless, and preferably with a level indicator. And drill down straight! Even a tad amount of angle in a bored hole can make it muy difficult to get the fasteners to cooperate.

Press and Tool Mounting
Make an investment in at least “good” grade tools for drilling holes and measuring where to drill them, and then for installing the fasteners. It really makes a difference to have proper size drill bits and drivers.

The press is the base for the dies. It’s important. Of course it is. Mounting is key. I suggest a workbench that’s mounted to a wall, along with its legs fixed down to the floor. It’s the press upstroke, not the downstroke, that taxes the stability or solidness of the workbench.

If you’re building a workbench, consider carefully the overhang and bench-top underside construction, or at least dimensions. What you don’t want, and what I have had so I know, is a combination of press hole mounts that conflict with workbench construction. Like when there is a structural crosspiece right underneath where a hole has to bore through. That’s a mess to deal with, or it can be. Then you have to drill a hole big enough to give a window to install a washer and a nut, and then that nut won’t want to stay tight. Check first before you settle on your plans. 6 inches of overhang (free underside) mounts anything I’ve yet used.

nuts and bolts
Bolt goes down through the press mounting hole, preceded by a plain washer. A fender washer then goes against the bottom of the bench, followed by a nut, either plain preceded by a star washer or nylock. If it’s a star washer, the star points face the nut underside. Get good hardware. And use the fender washer!

Do a template for press mounting. That’s easy by doing the “rub trick” with a soft pencil on a piece of paper taped to the press underside; some manufacturers provide templates, and that’s a nice touch. Otherwise, use a centering tool to mark the holes, used through the mounting holes on the press. Even being a little bit off hurts wonders. And drill straight! Get a drill with a level-bubble. The thicker the bench-top, the more mess a small angle error makes.

A cool trick for drilling holes in laminate or wood is to put masking tape over the marks for the drill bit start marks before boring. This keeps the material from splintering. Never (ever) use the press holes themselves as a guide for the drill bit.

I strongly suggest backing up the underside bench nuts with washers. Otherwise there will be compression of the nut into the bench material, and ultimately result in loosening. This is actually very important… Use a fender (flat) washer next to the wood, and a star (locking) washer between the nut and the fender washer (stars face the nut underside), or use nuts with “nylock” inserts.

After mounting the press securely, keep it secure. Check all the fasteners especially after the first use. And, as just recommended, here’s where washers and locking fasteners help. As said, the washers help avoid the compression into a wooden benchtop that can otherwise ultimately lead to a lifetime of snugging down the bolts — they’re not tightening, they’re just pushing in deeper… The locking fasteners are resistant to stress-induced movement.

I have increasingly become a fan of using threaded retainers in place of nuts to screw the bolts to. This is a great means to secure things like case trimmers, powder meters, or anything else that might need to come on and then off the workbench area. Threaded inserts, such as t-nuts, remain in place on the bench top underside and the bolts are just run down into them. That makes it simple to mount and dismount with allenhead screws. Less benchtop clutter also.

t-nut and bolt
I’m a big fan of t-nuts for mounting accessories to a bench. When you need the tool — small press, case trimmer, or what-have-you, bring it out and snug it down with an allen-head bolt. Helps keep the benchtop less cluttered. I often mount the tool, like a case trimmer, to a piece of wood using t-nuts and then secure the whole thing to the bench top using a c-clamp.

Supply Items+
Shop rags work better than anything, and that’s why they’re used in shops. Sometimes the obvious is true. Get them at an auto parts store.

Invest in some good rust preventative and then use it. A lot of the tools we use don’t have any or adequate protective finishes on them, so give them a wipe-down after use. Local climate has a whopping lot to do with the need and frequency for this. Plus, there’s always going to be unforeseen times you’ll need to free a stuck fastener. Kroil-brand penetrating oil is the best I’ve used. Tip: Always grease contact points between steel and aluminum. If you don’t it will “freeze.”

Light is an asset, and, especially as eyes get older (dang I hate to say that, so let’s say the more and more someone needs bifocals and won’t get them) some magnification is a help too at times. It’s easy to find one of the clamp-on arm-style magnifying lights at most office supply stores, and even easier to locate a pair of reading glasses.

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

RELOADERS CORNER: Inside Reaming Vs. Outside Turning

Facebooktwittergoogle_pluspinterestyoutube

Some confuse these operations. Don’t! Here’s what each is, and isn’t…

Glen Zediker

I get a lot of questions. I always answer each one, and in doing so that experience reminds me of the wide span of topic knowledge needed to be a successful, and safe, handloader. I make an effort not to assume any level or depth of anyone’s understanding of any topic I might address. At the risk of “offending” all the experts out there by wasting their time with fundamental starts to technical pieces, I’d dang sho rather bore them than shortchange a newcomer out of elemental information.

I told folks in my last book that “grains” refers to a propellant weight, not a kernel-count. Right. But I’ve fielded that question more than once. That’s not, in my mind, a “stupid” question. Truth: The only stupid question is one that’s not asked, when there’s a need to know.

So, that was leading into this: Here’s a question I got just yesterday that sourced via someone who wasn’t even a little bit uneducated in the need for finer points of case prep. This fellow was confused about the relationship between inside case neck reaming and outside case neck turning. Here’s a longer version of the answer I returned to him —

First, there is no relationship between inside neck reaming and outside neck turning, and by that I mean they are not a combined process. As a matter of fact, these should not be combined!

They can be confused because they both ultimately accomplish the same thing, the same basic thing: each process removes material from a cartridge case neck cylinder, and that makes the case neck wall thinner. These two ops, however, are done for two different reasons.

neck reamer
Inside neck reaming is a treatment to thin excessively thickened case necks after several firings. If the neck walls get too thick, the outside diameter of the case neck might not have adequate room in the chamber to expand to release the bullet. Excess pressure! Shown is a Forster-brand accessory for its case trimmer.
IMPORTANT: “Standard” case neck reamers are for use only on fired but not resized cases! Exceptions are custom-size reamers, and I own a few of those that get use from time to time, but, as was said for tight-necked rifles, if you know about that then you already know about this…

An inside case neck reamer is intended to relieve excess material from case necks that have thickened excessively through use and reuse. Brass flows, and it flows forward.

Important! Most “standard” case neck reamers are intended to be used on fired, but not yet resized, cases! In other words: Use the reamer on the fired cases as-are. Do not use one on a case that’s had its neck resized because that will cut away way too much brass.

Another application where inside reaming is frequently recommended is in forming operations that require a reduction in case neck diameter. When a case is “necked down,” which means run through a sizing op that creates a .243 caliber from a previously .308 caliber, for instance, the neck walls thicken. An appropriately-sized reamer makes the shortest work of this tedious but necessary job. Most forming die packages either include or make mention of the specific-size reamer to use.

Outside case neck turning is done to improve the consistency of case neck wall thickness around the cylinder. It’s a step taken to improve accuracy. Outside case neck turning should be done only on brand new (unfired) brass. It’s more precisely effective and easier because that’s when the alloy is at its softest.

turned case neck
Outside neck turning is a “precision” case prep step that improves consistency of the case neck wall thicknesses. It can be done a little bit to clean up “high spots” and make the cases better, or full-area to make them nearly perfect. That, of course, also makes them universally thinner so your sizing apparatus might need to be dimensioned differently to maintain desired case neck inside diameter to retain adequate grip on the bullet.

There are specific, custom combinations that require a smaller than standard case neck outside diameter. The “tight-necked” rifle, which is just about exclusively encountered in Benchrest competition, has to have its brass modified to chamber in the rifle. The neck area of the rifle chamber is cut extra-small to provide a means to attain a “perfect” fit and minimal case neck expansion. If you’re into this, then you already knew that…

So, the primary role and use of an inside neck reamer is as a safety precaution; its secondary use is as a prep step in case forming. The primary role and use of an outside neck turner is to improve the consistency, quality, of a case neck cylinder. The idea is that more consistent wall thickness leads to a more centered case neck. And it does. Reaming does zero to improve consistency. Reaming just makes a bigger hole of the hole that’s already there; it doesn’t relocate its center.

drop test
The way (or one way) to tell if your cases need a ream is to take a fired case and see if a bullet will freely drop through the neck. If it won’t, they’re too thick. Thrown them away or refurbish them with a reamer. Resizing won’t change a thing.

Combining these ops might create a safety issue because the necks might get too thin, and that could mean there wouldn’t be enough grip on the bullet. Point is, ultimately, that reaming and turning are not equivalent even though they might seem to be doing the same thing. One is not a substitute for the other. It certainly would be possible to remove metal from the outside of the neck cylinder to overcome the effects of thickened necks, if (and only if) the neck is sized again using the usual die apparatus. When that’s the goal, though, a reamer is lower effort, faster, and less expensive to buy into.

Very important! Always (always) culminate either operation by running the cases a trip through the sizing die you normally use.

Check out a few tools at Midsouth HERE

RELOADERS CORNER: Barrel Twist Rate

Facebooktwittergoogle_pluspinterestyoutube

Understanding the relationship between bullets and barrel twist helps prevent mistakes. Here’s what you need to know…

Glen Zediker

Sierra 90gr MatchKing

Why am I devoting this space this time to such a topic? Well, because it’s commonly asked about, and, no doubt, because it influences some of the decisions and options faced in choosing the best-performing load for our needs. Making a mistake in choosing twist can limit both the selection and performance in the range of usable bullet weights and styles.

First, barrel twist rate is a component in the architecture of the barrel lands and grooves. The lands and grooves form a spiral, a twist, that imparts spin to a bullet, and the rate of twist is expressed in terms of how far in inches a bullet travels to make one full rotation. “1-10” (one-in-ten) for example means “one full rotation for each ten inches of travel.”

Bullet length, not weight, determines how much rotation is necessary for stability. Twist rate suggestions, though, are most usually given with respect to bullet weight, but that’s more of a generality for convenience’s sake, I think. The reason is that with the introduction of higher-ballistic-coefficient bullet designs, which are longer than conventional forms, it is easily possible to have two same-weight bullets that won’t both stabilize from the same twist rate.

70gr VLD
Good example: 70-grain VLD (left) needs an 8; the Sierra 69-grain MatchKing next to it does fine with a 9. It’s bullet length that determines the needed twist, not just weight.

The M-16/AR15 barrel changes give a good example. Short history of mil-spec twist rates: Originally it was a 1-12, which was pretty standard for .224-caliber varminting-type rounds, like .222 Remington, which were near-universally running bullet weights either 52- or 55-grain. That worked with the 55-grain FMJ ammo issued then. Later came the SS109 63-grain round, with a bullet that was a bit much for a 1-12. The military solution was total overkill: 1-7. That’s a very fast twist.

Commercially, the 1-9 twist became the standard for .223 Remington for years. It’s still popular, but is being replaced, as far as I can tell, by the 1-8. An increasingly wider selection of barrels are done up in this twist rate. I approve.

1-8 twist.
Generally, well, always actually, I recommend erring toward the faster side of a barrel twist decision. 8 is becoming a “new standard” for .224 caliber, replacing 9 in the process. Reason is that new bullets tend to be bigger rather than smaller. Don’t let a too-slow twist limit your capacity to exploit the promise of better long-range performance.

I’d always rather have a twist too fast than not fast enough. For a .223 Rem. 1-9 is not fast enough for anything longer than a routine 68-70-grain “magazine bullet,” like a Sierra 69gr MatchKing. 1-8 will stabilize any of the newer heavier bullets intended for magazine-box cartridge overall lengths, like a Sierra 77gr MatchKing. An 8 twist will also shoot most of the longer, higher-BC profiles, like the Sierra 80gr MatchKing (which is not intended to be assembled into a round that’s loaded down into a magazine).

Other popular calibers have likewise edged toward faster and faster “standard” twist rates, and that includes 6mm and .308. Once those were commonly found as 1-10 and 1-12, respectively, but now there’s more 1-7s and 1-9s offered. Reason is predictable: longer and heavier bullets, and mostly longer, have likewise become more commonly used in chamberings like .308 Winchester and 6XC.

The tell-tale for an unstable (wobbling or tumbling) bullet is an oblong hole in the target paper, a “keyhole,” and that means the bullet contacted the target at some attitude other than nose-first.

Base your next barrel twist rate decision on the longest, heaviest bullets you choose to use, and at the same time realize that the rate chosen has limited those choices. If the longest, heaviest bullet you’ll shoot (ever) is a 55-grain .224, then there’s honestly no reason not to use a 1-12. Likewise true for .308-caliber: unless you’re going over 200-grain bullet weight, a 1-10 will perform perfectly well. A rate that is a good deal too fast to suit a particular bullet may cause damage to that bullet (core/jacket integrity issues), and I have seen that happen with very light .224 bullets, like 45-grain, fired through, say, a 1-7 twist. At the least, with that great a mismatch you might not get the velocity up where it could be.

.224 bullet extremes
Clearly, these don’t need the same barrel twist to attain stability: the bigger bullet needs double the twist rate that will fully stabilize the smaller one. There’s quite an extreme range of .224-caliber bullets, like this 35-grain varmint bullet and 90-grain match bullet. Now. Do not fire the little bullet in the big bullet’s barrel! It probably would not make it to the target… Swap barrels and bullets and the big one will likely hit sideways.

Bullet speed and barrel length have an influence on bullet stability, and a higher muzzle velocity through a longer tube will bring on more effect from the twist, but it’s a little too edgy if a particular bullet stabilizes only when running maximum velocity. My failed 90-grain .224 experiment is a good example of that: I could get them asleep in a 1-7 twist 25-inch barrel, which was chambered in .22 PPC, but could not get them stablized in a 20-inch 1-7 .223 Rem. The answer always is to get a twist that’s correct.

Effects on the load itself? Yes, a little at least. There is a tad amount more pressure from a faster-twist barrel using the same load, and the reason is initial bullet acceleration is slower.

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

RELOADERS CORNER: SD Pt. 2

Facebooktwittergoogle_pluspinterestyoutube

Here’s how to use (or not use) Standard Deviation calculations in ammo decisions, what they are, and aren’t… Keep reading…

Glen Zediker

A standard deviation plotted out is a bell curve. Chances are outstanding that a range session calculation will plot into what they call a “normal curve.” Like any normal bell curve, it can get divided into three segments and given values, and, technically, these are the “standard deviations.” It’s “a” standard deviation rather than “the” standard deviation.

SD bell curve plot

Assuming a normal curve, the values are that about 68 percent of forecasted results will lie within one standard deviation of the mean, about 95 percent lie within two, and over 99 percent lie within three standard deviations. If we have an SD calculated to be 12, that means that applying one standard deviation means that about 68 percent of all “next shots” will be +/- 12 feet per second. Since, though, the curve is in threes, in effect if not in fact, that means that a scant number of the shots pose a chance for +/- 24 and some teeny chance remains for shots to go to +/- 36. That, however, is extrapolating or predicting with data and that’s not really wise and doubtlessly uncalled for. Data collection is a record of numbers and I do know that there’s 100 percent chance that the highest and lowest velocities collected for an SD calculation did, in fact, happen. That’s what matters. No matter what the shot results calculated into for an SD, those were the two that represent the highest and lowest prints on the target.

It’s mathematically not possible for an SD to be higher than the greatest single raw deviant, but I do for a fact know that an SD can easily be far lower than the worst shot. Given how it’s calculated, along with how many samples contributed, it’s plain that the nearer the majority are to themselves the less impact a bad one or more has.

I said in a very open-ended way last article that a tolerable SD is 12. Anything more than that is not good; anything less than that probably won’t perform noticeably any, if at all, better than a 12. However! It is at this number, so I say, where the often-uttered tune of “…SD doesn’t matter…” and its refrain of “…seen good accuracy with high SDs…” starts and stops. Twelve. That’s it. Now we have an SD that “doesn’t matter.” The reason this is stuck out here is that everyone has heard this chorus but hopefully figured that it couldn’t be taken universally at literal value. Well it can’t.  So now you know! It’s 12. 12 should not be responsible for a points loss, even accounting for or including coincidence of any one shot hitting the edge limit of usual group size.

(Yes, 13 or 14 or 16 or even 20, which is often given as a “limit,” might well be a realistic ceiling but I drew a line to have one. Since there’s a line, now we can cross it and commence argument. I won’t use any load in competition that wouldn’t calculate to a single-digit SD. My 600-yard .223 Rem. load tested to an SD of 3.18 with a Range of 8 fps.)

So after all this has been said, I don’t give SD as much weight in my load decisions as some do. The reason for my focus on it here, as said in the first article, is because that’s the usual “standard” measure of consistency. I look at the speeds as they come up on the chronograph display and write them down. I weigh range and extreme spread more heavily, and I want to see really small variations over the number of test rounds I fire. It’s a matter of waning patience and waxing time. If I see a variance that could cost a point, that load is abandoned.

TESTING TIP
If you don’t have a chronograph or don’t want to burden a testing session with using one, watch for a correlation between the elevation dispersion and the wind dispersion of test groups. At 600 yards I always test from position (prone, “suited up”). No chronograph (muzzle-mounted chronographs now make this a non-issue). I’ll already have speed-checked the load I’m now down on the mat with. When I shoot my groups, I honestly don’t pay much attention at all to anything but measuring how level I got my perforations. Attempting shot-to-shot wind corrections when testing for ammunition accuracy throws another variable into it that might be most misleading. If I come up with a group that’s a foot wide but only three inches tall, I’m happy.

5 TIPS FOR LOWER SDs
Aside from finding the perfect and magical load combination, ha, there are a few things that do seem to help tighten shot-to-shot velocity deviations. They’ve all be talked all the way through and back again in this space in other articles, but, considered ultimately that this is the overall effect they have, here they are again:

One. Primer seating: fully seated onto a flat pocket bottom.

Two. Consistent propellant charge: weigh the charges if metering isn’t dead-on perfect.

Three. Ignition efficiency: consider that inside flash hole deburring routine…

Four. Temperature insensitivity: choose propellants that exhibit stability under extremes.

Five. Balance: strive to find a propellant that fills the case, but “loosely” (no compressed charges); even more, avoid an overage of air space. These both allow too much variance in ignition pattern.

Propellant level.

Addition
I learn things all the time. A most knowledgeable and helpful reader pointed out a detail in SD calculation that is better adapted to calculations for ballistics, and it helps because of the usually relatively small size sample involved. We’re not going to chronograph 100s of rounds, usually 10-20. So, instead of dividing the average square of the deviations by the number of samples, but the average square of the values, less one (n-1). That helps any distortion of results toward a number that calculates too small. Keep in mind always that SD is an estimate, in one way of looking at it.

This article is adapted from Glen’s book, Handloading For Competition, available at Midsouth HERE. For more information on that and other books by Glen, visit ZedikerPublishing.com

RELOADERS CORNER: SD — what it matters and why

Facebooktwittergoogle_pluspinterestyoutube

Getting a handle on improving long-range accuracy has a lot of to do with understanding the importance of consistent bullet velocities. Here’s a start toward that…

Glen Zediker

There’s one more thing (seemingly, there’s always one more thing…) that’s important to accuracy at extended distance. I’ll say “extended distance” is anything over 300 yards. That is bullet velocity consistency.

I’ve said in these pages before that a good shooter will lose more points to elevation than to wind. This next explains that a might more.

First, and the first step, is getting and using a chronograph. It doesn’t have to be a zoot-capri model, and nowadays that’s a fortunate bonus because there are a number of inexpensive chronographs available that are entirely accurate.

PACT chronograph.
A chronograph is essential, well, at least for all this here. There are a lot of good ones. I’m partial to PACT.

Check Misdouth offerings HERE

magnetospeed chronograph
The newer barrel-mounted electro-magnetic chronographs make it really easy. I like the idea of being able to chronograph from shooting position, not just from a benchrest. This is a MagnetoSpeed.

“Standard deviation” (SD) is probably the most commonly used measure of bullet velocity consistency. SD reflects on the consistency of velocity readings taken over a number of shots. “Standard” reflects on a sort of an average of the rounds tested.

[Math folks don’t use phrases like “sort of” when describing numbers and can provide tickier definitions of SD and the means to calculate it. Here it is: it’s the square root of the mean of the squares of the deviations. Actually harder to say than it is to calculate.]

Steady Wins the Race
Standard deviation is not the only measure, and I don’t even think it’s the right one, let alone the most important, but it’s no doubt the most popular way to talk about ballistically consistent bullet performance. I don’t think standard deviation is near as important as is the “range,” which is the lowest and highest speeds recorded. Some who write and talk about it call that “extreme spread,” but if we want to get picky over terms (and ballisticians, card-carrying and self-styled, tend to get right touchy over such formalities) extreme spread is the difference between this shot and the next shot.

I watch the speed on every shot. I compare this one to the next one and to the last one, and, as said, find the highest and the lowest.

There is no saying that a load that exhibits low standard deviation is going to group small, just because of that. Any Benchrest competitor will tell of experiences whereby “screamer” groups came with high SDs and hideous groups with low SDs (“high” and “hideous” by their standards, still pretty small for the most of us). But, at 100 yards the bullet’s time of flight and speed loss are both so relatively small that variation in bullet velocities isn’t going to harm a group, and, yes, not even the tiny groups it takes to be competitive in that sport. On downrange, though, there is going to be a relatively greater effect on shot placement, right? Yes and no. Drift and drop are influenced. There is a relatively greater effect in ultimate displacement of elevation, more next. Based on drift allowance it probably does not.

To put an example on it, let’s say we’re shooting a Sierra® 190gr .308 MatchKing. Its 2600 fps muzzle velocity becomes 2450 at 100 yards and 1750 at 600 yards. (All these numbers are rounded examples, and examples only.)

If we’re working with a truly hideous inconsistency of 100 fps, say, that means one bullet goes out at 2550 and the next leaves at 2650 in a worst-case event. The first bullet tracks across about 28 inches (constant full-value 10-mph wind to keep it simple) and the next moves sideways 26 inches. Figuring drift on 2600 fps means it’s two inches off, one inch per shot.

Drop, which means elevation, is a (the) factor, and here’s where poor SDs bite. With this Sierra® 190, drop amounts over a 100 fps range are about three times as great as drift amounts. A vertically-centered bullet at 2600 fps hits about 5-6 inches higher or lower at each 50 fps muzzle velocity difference. That’s enough to blow up a score to elevation. And it gets way, way on worse at 1000. Keep always in mind that velocity-induced errors are compounding “normal” group dispersion. And, in reality and as discussed before, it’s unusual in a competitive shooting venue for a wind to be full-value, so the on-target lateral displacement is even relatively less — but the elevation displacement is consistent.

The next-to-the-bottom line, then, is that poor SDs don’t hurt in the wind as much as they do on the elevation. The bottom-line, then, is back to the start: don’t shoot a load with inconsistent speeds. It’s flat not (ever) necessary.

So what’s a tolerable SD? 12. That’s the SD that “doesn’t matter” to accuracy. More later…

SD bell curve
Standard deviation calculation forms a bell curve. The steeper and narrower the apex of the bell, the more level and narrower the fluctuations were. But there’s always a bell to a bell curve and the greatest deviations from desired standard are reflected in this portion of the plot. Depending on the number of shots that went into the SD calculation, these deviations may be more or less notable than the SD figure suggests. So? Watch each shot. That’s the way to know how a load performs with respect to velocity consistency. Each and every speed collected for each and every shot fired in a test. More next time…

MATH: For Them That Wants It
If you have no electronic gadgetry to help, calculate SD like so: add all the velocities recorded together and divide them by however many there were to get a mean. Subtract that mean number from each single velocity recorded to get a deviation from the mean. Square each of those (eliminates the negative numbers that ultimately would cancel out and return a “0”). Add the squares together and find the mean of the squares by dividing again by the number of numbers. Then find the square root of that and that’s the standard deviation figure, which is “a” standard deviation, by the way.

This article is adapted from Glen’s book, Handloading For Competition, available at Midsouth HERE. For more information on that and other books by Glen, visit ZedikerPublishing.com

 

 

Reloaders Corner: Accuracy 2

Facebooktwittergoogle_pluspinterestyoutube

Accuracy matters! Now here’s what matters to accuracy… This article discusses 5 essential steps that pay off big.

Glen Zediker

Last time I wrote a little “essay” on the importance of accuracy and a few ideas on why it matters and how to judge it. That’s all well and good, but the part I knowingly left out was to say more about “how” to get the most of it. Here’s a few points that, over a many-many years, have proven themselves to me to improve the quality of on-target perforations, and, to make sure I’m clear, that is manifested by smaller-diameter shot groups. There are a plenty of others who agree with these tips. There are plenty of others who might not agree with all of it, and even a few more who would love to add their own “can’t miss” components to this mix. But here are mine.

concentricity

ONE: After-the-fact concentricity. By that I mean actually checking loaded rounds on a runout indicator. Concentricity is pretty much the goal for sizing, seating, and neck-related case-prep steps, like outside case neck turning. However! All those things are done to help support concentricity, but not a one of them is concentricity.

Concentricty is the centered relationship of all influential circles in a cartridge case, with the reason that a more concentric round will have its bullet looking down dead center into the rifle bore: ultimately, if the loaded round spins “flat-line” it will shoot better than those that don’t.

It starts with brass selection and then likely also segregation. Then it moves on to the quality of tool alignment.

I have checked enough factory-loaded rounds though a concentricity fixture, and those that show the best group the best; even if the overall group from random selections is so-so, “flatliners” shoot smaller.

Check out Midsouth products HERE

TWO: Inside flash hole deburring. I know I’ve mentioned this before, but this simple and easy step shows up on target next firing on thusly-prepped cases. It improves propellant ignition consistency and, depending on the tool used, also ignition efficiency.

Inside deburring tool
How and why an inside flash hole deburring tool works is pretty clear to see. Despite the fears I’ve heard, it will not hurt the integrity of the case.

There’s a burr inside most cases that resulted from manufacture (with only a few drill-cut exceptions, like Lapua, cartridge case manufacturers punch the flash hole). This burr is variable in size and scope, but it acts as a block to the spread of primer flash, and it’s redirecting or misdirecting the flash at the same time.

It only has to be done once. Ever.

Check out Midsouth products HERE

THREE: Primer pocket uniforming. This helps because it lets you set each primer the same, and also fully. The reason is that it squares the “edges” or corners of what otherwise is a slightly bowl-shaped cylinder. A perfectly seated primer is sitting square and flush on the bottom of the pocket, with its anvil legs compressed. This “loads” the compound for rapid and consistent ignition. If the primer isn’t seated fully then the firing pin finishes that job before detonation. That creates what equate to time variables — inefficiency.

Funny, but clean primer pockets don’t shoot any better than dirty pockets. What matters is flat pockets.

Check out Midsouth products HERE

FOUR: Consistent case sizing. There is a widespread fear, especially among some “accuracy” fanatics, about sizing ops. There’s also a lot misunderstood about full-length sizing versus neck-only sizing and so on. But. What matters is that, whichever tooling and how much sizing the cases are treated to, it needs to produce dead-same cases. Consistent case expansion dynamics is not often talked about, but it’s influential, especially on longer-range rounds. Just in general, going a little on the “light” side with sizing might seem like a good idea (less stress, less working the metal, etc.) but it can also lead to round-to-round inconsistencies. My belief is that it’s better to be more “positive” in sizing ops, and by that I mean to reduce a case neck 0.003 inches rather than 0.001 prior to seating a bullet. Get all the case shoulders the same height. Running extra-light case neck tension and leaving case shoulders where they emerged last firing may not reproduce round-to-round consistency, unless the rifle chamber was perfect and the cases were too. A little more sizing works the best for the most of us in the most rifles.

Forster seating die

FIVE: Invest in a good seating die. No doubt: the bullet seating operation is the “last thing” that happens and it’s also the one thing that can corrupt the care and treatment given to the quality of the loaded round prior. A sleeve-style seater, well machined, goes a whopping long ways toward preserving alignment, and, therefore, concentricity. Also make sure that the stem in yours comes to rest well down onto the bullet ogive, and, above all else, is not contacting the bullet tip! That will wreck a round.

seating stem
Remove the seating stem and drop a bullet into it. The farther down the ogive or nosecone the step recess grips the bullet, the better. If it’s only pressing down against the bullet tip, a crooked seat is assured, along with inconsistent seating depth.

Check out Midsouth products HERE

This article is adapted from Glen’s newest book, Top-Grade Ammo, available at Midsouth HERE. For more information on that and other books by Glen, visit ZedikerPublishing.com

RELOADERS CORNER: The Value of Accuracy

Facebooktwittergoogle_pluspinterestyoutube

Can you take a focus on accuracy too far, or never far enough? Here are some thoughts on why better accuracy (really) matters…

Glen Zediker

dial indicator

Anyone who has ever read one of my books knows the extent of tickiness that can be involved in handloading. Competitive shooters also tend to get pretty wrapped up and sometimes entrenched hopelessly in technical rifle details. All these things we do are done in the hope of better accuracy: smaller shot groups.

Why bother with tickiness? Well, the answer (always) depends on the level of tickiness afoot and on the level of reward we get from it. No other answer makes any sense.

Accuracy always matters. If you do something different or new in the handloading process and see better shot groups, that no doubt was worth it. Ultimately, it was worth it. It might have been upgrading tools, experimenting with components, one or more case prep steps you hadn’t tried before. It’s still always a payback over the expense, time, and effort. But. It’s another level, attaining another level. It’s stepped up. I’ve compared all this to other endeavors where attaining that new level forever eclipses the old. But then there’s also the time and the effort. When I load ammunition, I consider its purpose. I do not turn case necks for ammo that’s going through my old SP1 on a Sunday afternoon of tin can hunting with my sons. For that, I’m interested in volume and function: the best way to load a lot of .223 Rem. with bulk-packed bullets and ball gunpowder, and with the fewest number of steps. We need a lot of ammo because we have eradicated entire species of discarded objects.

But, let’s for the rest of this assume that the sole purpose is the smallest group sizes we can get, day in and day out. That’s easier to talk about and make sense of, because, no doubt, there are factors that influence it, and I do know what they are.

I’ve always judged accuracy by group size. No shock. Most people do it thataway. I’m also way on more concerned with the worst group my combination shows me than I am the best group. Not everyone views that the same. When it gets down to it, though, I want to know what the worst shot I can anticipate might be because that information is very valuable in adjusting for the next shot. Now I’m talking about shooting for score in a tournament.

I picture a circle that outlines the group size I warrant for my rifle/ammo combination. For my own purpose of clarity, I call it “the accuracy cone.” This circle gets bigger the farther I’m shooting. Shots outside that circle need correction, shots inside that probably don’t. Yes, no, I don’t always launch a perfect shot. So honesty matters, objective evaluation of the shot break.

Group ilustration
You are always shooting a group! You might be aiming at one point but you’re shooting a group. The aiming point is really the center of the group. That’s a “zero,” by the way, or that’s how to zero, but this is straying beyond the levee here. This drawing is a representation of the importance of smaller group sizes. One of the biggest helps that great accuracy provides is that it’s clear when there’s need for sight correction, and when there isn’t. The smaller circle the ammo covers on a target face, the more defining sight corrections can be. If that’s not clear: A perfect shot break on a correct sight setting at 600 yards from a 1 MOA combination means that a shot 3 inches left, right, up, or down away from target center is still a “perfect” shot, even though the perforation point was imperfect. With a 1/4 MOA combination, we’re defining “perfect” with more certainty, because “imperfect” is anything outside 1 inch of target center. Follow? This isn’t just theory.

Mathematically-oriented people may tell you (and I understand this) that testing with 3-round groups provides accurate feedback of a round’s performance. It has to do with probabilities and such. However! I believe too much in luck, or as Buddy Dave calls it, “The Bullet Fairy.” Math-folk will further tell you that the more rounds fired the bigger the shot groupings will become. I’ve seen many instances where that wasn’t true, where the first two or three rounds defined the outer edge of what ultimately became a 10-shot group. I can’t argue with math, but I can argue with myself to the point that I want to see more rounds, and more groups, before I cook up a big batch of a component combination and call it good, or call it “match ammo.”

If you are a competitive shooter, better accuracy helps you get all the points you hold for. We can’t, any of us, ask for more than that. If you are a varmint hunter, it means a close miss may become a hit. The smaller the target the more it matters, or the smaller the goal area on a target is. Aim small, miss small. So let’s miss smaller… Examples can continue, and they might involve a trophy elk in New Mexico, or something even more important to stop in its tracks. It’s doesn’t really matter if the target is 10 feet away, or 10 yards, or 1000 yards, a more accurate firearm is a more effective tool. You can’t miss! Or you sure don’t want to.

accuracy cone
This equals that. Accuracy, on-target group size, is a “cone” that gets wider, expands across distance. A 1/2-inch 100 yard gun is not a 5-inch 1000 yard gun. It shoots bigger than that. However! A solid load-test group like this one David Tubb fired at 288 yards held up on down the pike at 1000. Tip: velocity consistency is a key to keeping a group together at extended distances.

LAST WORD
The value of accuracy is undeniable, but the value of time and effort and expense does indeed have a limit. No, I don’t do “everything” possible to my ammo to make it perfect. I have found a few things that really help, things that are reasonably (by my standards) good paybacks. Another tip: Get a good barrel! Honestly: that gets the most from whatever you do, or don’t do, to help the cause.

This article is adapted from Glen’s newest book, Top-Grade Ammo, available at Midsouth HERE. For more information on that and other books by Glen, visit ZedikerPublishing.com

ATF Goes Through Major NFA Branch Reorganization

Facebooktwittergoogle_pluspinterestyoutube

BATFE organizational changes might mean greater processing efficiency and shorter wait time. Here’s the scoop…

Source: Recoilweb.com

If you own or have been thinking about owning an NFA item like a short-barreled rifle (SBR) or silencer, no doubt you know that processing times have been going up. The reason is ATF Rule 41F, which became active in July of 2016. The increase of required paperwork under the new rules combined with the front-loading of many submissions by those attempting to make it before the deadline have led to a larger workload for the NFA Branch. It hasn’t helped the silencer industry either.

SBR

But on April 3, 2017, the Bureau of Alcohol, Tobacco, Firearms, and Explosives (BATFE) made some major changes that amounted to a complete reorganization of the National Firearms Act (NFA) Branch.

In an attempt to better provide oversight, cut down wait times, and increase efficiency, two distinct new branches have been formed: The Industry Processing Branch (NFA IPB) and the Government Support Branch (NFA GSB).

The NFA IPB is responsible for industry forms processing and working towards refining current operations.

The duties of the NFA GSB include processing SOT applications, government transfers, exemptions, and expediting LEO/Gov requests.

Furthermore, a new NFA Division Staff Program Office has been formed to manage publications, FOIA requests, respond to data calls, and oversee the vetting of statistical data.

suppressor

These new changes just might mean greatly reduced wait times — keep your fingers crossed!