Tag Archives: benchrest

RELOADERS CORNER: 3 Helps For Easy Load Work-Ups

Facebooktwittergoogle_pluspinterestyoutube

Read this before you start the process of working up a load for your new rifle! It could save you huge amounts of time and money… Find out more!

Glen Zediker

Spring is around the corner. Well, if you walk way out into the street and squint really hard you can at least think you see it… Well it’s coming soon enough, at least, now’s a good time to get ready.

I never have been big on the personal value of published load data. The data I’m referring to is that from propellant and other component manufacturers, and also from articles done by independents. I think all such information, at most, provides a place to start, and it also gives some ideas on tendencies and cautions, and provides means for comparisons. But. I don’t think it can be taken straight to the loading bench with any guarantee of success, or of attaining “advertised” performance. And I say that not because I don’t think these folks don’t know what they’re doing. They do! It’s because, after way more than enough experience in proving myself right, I can tell you absolutely that their rifle is not your rifle! Neither, necessarily, are their propellant, primer, case, or bullet. Always take careful note of the barrel and components used for any published test data, and compare them to yours. In later comparisons of my notes with published data, sometimes I’m higher, often times I’m lower, and enough times I’m way lower… That’s the main concern there.

It’s not at all difficult to learn to develop your own loads, to essentially write your own loading manual.

To do this efficiently, you need to learn to load at the range. Right, right there near to where you’re testing. An unremarkable investment in a few tools and a little creativity can provide a way to take your show on the road.

Lee press mounted outdoors
You don’t have to invest a fortune to take your show on the road. A C-clamp and one of these little Lee Reloader presses is all you need! And a good powder meter. One with a clamp is handiest, or just mount it to a piece of wood and clamp that down (even a pickup tailgate works just fine). One clamp is adequate on the press since bullet seating is all in the “down” direction and not much force is needed.

The reason to do this is because it provides a way to precisely chart results. It’s a more reliable and accurate way to proceed. Otherwise, the option is to load varying charges at home and then see what happens at the range. That’s okay, but not nearly as good as on-the-spot experiements. Plus, you won’t have left over partial boxes of poor-performing rounds. It’s more economical and way on more efficient.

The preparation part, and this is what you might spend the remaining cold month or two working on, is, first, to get the tooling ready and, second, and most important, to start making notes on your powder meter.

Important: To be able to work up at the range, it’s mandatory that you’re using a meter that has incremental adjustment. Either a “click”-type “Culver”-style insert or, at minimum, a micrometer-style metering arm. You’ll be relying on the meter, not scales, to progress upward in propellant charges, and you absolutely have to know what the values are for each increment using the different propellants you plan to test. That is where you’ll be spending time prior to doing your homework. It’s well worth it! It can be a nightmare trying to get scales to read accurately outdoors, including the digital type.

Harrells meter mounted outdoors
I map out the incremental values of each click on my Harrell’s meter adjustment drum with the propellant I’ll be testing, and it’s really easy to step up each trial with confidence. I carry the whole kit in a large tool box.
Harrells meter close up
This is a Culver insert. It’s a huge help in following this process. It’s precise and repeatable.

Equipment List and Set-Up
When I need to do load work, I size, prep, and prime new cases and put them in a cartridge carrier (usually a 100-round box). I then pack up my little press, seating die, my meter, some cleaning gear, C-clamps, and my propellants. The press and meter and cleaning gear go in a tool box. I usually carry the propellants in a picnic-type cooler. And, very importantly, my chronograph. A notebook, some masking tape, and a sack lunch… I might be there a while.

Always (always) use new cases for load work-up.

When I get to the range, I’ll clamp-mount my press and meter to a bench, get out all the rest, and set up the chronograph. Take a target downrange and tack it up. I test at 300 yards, unless the load is intended for shorter-range use. I initially test longer-range loads at 300. Maybe I’m lazy, but longer-range testing is a tad amount more tedious. I’ll come back for that after I have a contender or two.

Working Up The Load:
The reason it’s a “work-up” is clear enough: we’re almost always looking to get the highest velocity we can, safely. High velocity, or higher velocity, is usually all-good. Shorter flight time means less bullet drift and drop, and a harder hit.

So working up means increasing propellant charge until we’re happy: happy with the speed and also that the cases will still hold water. (And more about that next time…)

blown primer
Keep track of the cases in the order they were fired. This helps later on when the effects can be measured. This little outing here, though, didn’t require a gage to cipher: a tad amount hot on that last little go around (last case bottom row on the right). Thing is, I didn’t load a whole boxfull of those chamber bombs to take with me, and that’s the beauty of loading right at the range.

Very important: it is vitally necessary to have established a goal, a stopping point, prior to testing. That is one of the functions of published data. That goal is bound to be velocity, not charge weight. And that, right there, is why you’re working up at the range: you want to get “advertised” velocity and need to find the charge weight that produces it.

I work up 0.20 grains at a time. Sometimes it’s more if I’m reading an unuseably low velocity on the initial trial. Since my meter has a “Culver”-style insert, which I trust completely, I reference its number of clicks in my notes rather than the grain-weights (a Culver works like a sight knob, and reads in the number of clicks, not the weight itself). I check the weights when I get back, and I do that by clicking to the settings I found delivered, and then weighing the resultant charges. Otherwise, just throw a charge into a case and cap it with masking tape (clearly labeled).

It’s not necessary to fire many rounds per increment. “Mathematically” 3-5 rounds is a stable enough base to reckon the performance of one step. Of course, I’ll be shooting more successive proofs-per-trial once I get it close. Some folks, and especially competitive shooters, wear out a barrel testing loads. That’s not necessary.

Here are 3 things I’ve found over the years to better ensure reliable results. Learned, of course, the hard way.

1. Limit testing to no more than one variable. I test one propellant at a time, per trip. If you want to test more than one on one day, bring the bore cleaning kit and use it between propellant changes. Results are corrupt if you’re “mixing” residues. Same goes for bullets. Otherwise, though, don’t clean the barrel during the test. I fire my most important rounds after 60+ rounds have gone through it, so I want a realistic evaluation of accuracy and velocity.

2. Replace the cases back into the container in the order they were fired. This allows for accurate post-test measurements. Use masking tape and staggered rows to label and identify the steps. I use 100-round ammo boxes because they leave enough space for the tape strips.

3. Go up 0.20 grains but come off 0.50 grains! If a load EVER shows a pressure sign, even just one round, come off 0.50 grains, not 0.10 or 0.20. Believe me on this one…

Check out chronographs HERE
Take a look at suitable meters HERE

The information in this article is from Glen’s newest book, Top-Grade Ammo, available HERE at Midsouth. Also check HERE for more information about this and other publications from Zediker Publishing.

RELOADERS CORNER: 4 Steps To Improve Standard Die Performance

Facebooktwittergoogle_pluspinterestyoutube

It’s easily possible to improve the alignment and concentricity of a die set, and the result is getting closer to perfection in your ammo. Here’s how…

Glen Zediker

Last time I wrote about some problems some dies can have. A couple of those things mentioned had a thing or two to do with preparation and setup, and I said then that “next time” I’d address a few ways to improve the results from the dies you already have. So here it is, sizing die first:

Many of the parts that make up a die, including the die body itself, have threaded couplings to allow for adjustment. Well, threads have gaps and that means there’s some amount of free movement afoot, or “afloat” more correctly. If there were no gaps between threaded surfaces then there would be no threading possible. To see it, loosen a locking or jam nut from a die part, the seating die or decapping stem for instance, and wiggle the part. It wiggles… Taking steps to, at the same time, take out that play and improve parts alignment pays off.

ONE: Let the shellholder float. One of the easiest mods to make to improve all die ops is to remove the apparatus that secures the shellholder into the press ram. It’s usually a wire spring clip. Pliers get it gone. Now the shellholder is free to slip in and out, mostly out, of its slot in the press ram, and an appropriately-sized O-ring banded around the slot area keeps it secure. Head to a real hardware store and find one easy enough. This mod has done two things: one is that the spring clip usually cocks the shellholder so it’s not sitting flat and flush with the ram top, which means neither is the case it’s holding, so now it is; and, two, there is now a self-centering action since the shellholder is free to move a tad. Always keep in mind that we’re dealing with small “tads” (0.001s of inches) and even though it might not be visibly noticeable, this floating setup will result in better alignment.

shellholder clip
Here’s an easy trick that will, not may, improve alignment in die ops. The ultimate result from all these steps is a more concentric round of ammunition, and most seem to think that’s worthwhile… It is.

TWO: Flatten the die lock ring. The next little help is to get the die body and press ram as closely aligned as we can. There’s a lot of gap resultant from the helix of 14-pitch threads. After adjusting the die body downward to produce the amount of case shoulder set-back you want, run a case fully into the die and, holding pressure (lightly, not forcibly) down against the press handle, secure the locking ring. This will ensure that the die is sitting “flat” atop the press. Then ONLY install and remove the die using the locking ring itself! Never the die body. By the way, and this actually is important: I don’t like lock rings that secure via a set screw; I prefer those that offer a clamping-style effect. The little set screw will lever against the angled threads on the die body and that, alone, can tilt the lock ring.

handling die by lockring
Once you get the dies secured as outlined here, handle them ONLY by their lock rings. That ensures all the careful prep stays intact. It also means no change of altering the die height, an asset toward maintaining correct case shoulder set back and also consistent bullet seating depths.

If you’re using a standard-form full-length sizing die, it will have an expander ball or sizing button (either term applies the same, just varies with who’s literature you’re reading). This part is mounted to the decapping stem and functions to open up the inside case neck after the case neck has been outside-sized by the die interior area. Depending on the difference in diameters between the newly-sized case neck inside diameter and the sizing button diameter, that’s more or less stress and friction the neck endures.

clamp-style lock rings
I use clamping-style die body lock rings, like these from Forster. Those with a set screw can tilt the lock ring when the screw tightens in against the angled threads.

I’ve talked more than a few times about the value of polishing the expander to reduce friction, but you still need then to make sure it’s sitting dead center within the die. So…

THREE: Align the expander ball. There’s a little bit of “feel” involved in this step, but it’s not hard to develop. The idea is to tighten the locking screw that secures the decapping stem against movement while the expander ball is captive in the sized case neck. After adjusting stem height (and, by the way, noticing the relatively huge amount of free movement the stem has) run a case up fully into the die and then retract it until you feel the expander engage within the case neck. Stop there. Now apply a little pressure against the press handle going the other direction (as if running the case back up) as you tighten the lock ring on the expander stem. That just set the expander in the center. If you have the tooling to determine this, select a case that represents your better examples of case neck wall thickness consistency for ultimate results.

 

expander ball adjustment
When it’s possible, and it usually is, secure locks for the pieces-parts when they’re doing their jobs. For instance, tightening the lock on a decapping stem when the expander is holding inside the case neck helps bring the stem into centered alignment, and the expander along with it.

Moving to the “other” die, the seater, the first step is the same as for the sizing die: flatten its seat atop the press, and that’s done pretty much in the same as for the sizing die. Instead of running a case into the die, though, I set an adequate number of flat washers atop the shellholder to bear some pressure against the die bottom. Then…

FOUR: Center the seater stem. Just like with the decapping stem, there’s thread play in the seating stem. Move the stem more toward an aligned center by simply securing its lock nut when there’s a bullet bearing up against the seating plug. As said, select a case with consistent neck walls to get best results. Now. The only foible with this is when you change seating depths by threading the stem up or down. It’s easy enough to repeat this op-step, but remember to do it. The BEST defense against alignment issues is purchase and use of a “competition”- or “benchrest”-style seating die. I’m talking about those having a spring-loaded sleeve that accepts the case fully before being run up to engage the seating plug. But, those still need to have their seating plug centered following the same sort of process used in these other “tricks”: snug the lock over a little pressure. That only has to be done once, though, for this die type.

The information in this article is from Glen’s newest book, Top-Grade Ammo, available HERE at Midsouth. Also check HERE for more information about this and other publications from Zediker Publishing.

Improving Tool Alignment: 5 Ways To “Float”

Facebooktwittergoogle_pluspinterestyoutube

“If it’s not perfectly aligned, then it should float…” Here’s a few tips on improving concentricity in the handloading process.


Glen Zediker


Water seeks its own level. Moving parts seek their own centers. Trick is getting the centers to agree. When centers coincide, that’s “concentricity,” and that a prime goal in the process of creating better ammunition. Anything under pressure and moveable, such as a cartridge case being sized or a bullet being seated into a case neck, moves toward a path of least resistance. If all the tooling associated is straight, and the case hisseff is uniform, then the result is “straight.” However! That’s in a perfect world.

In reality, which is accepting existence of tolerances and misalignments, taking steps to help two conflicting centers come close together comes from providing some free-play in the apparatus. I call it “floating.” And it works, and here are a few ways to use it.

Now, free-floating can work two ways. One is to incorporate a float into the mechanism in use, and another is to create float, and then use that to center a piece prior to snugging it down.

1. Shellholder
This first one might seem a tad amount clumsy, but it’s really easy to get used to in operation. Presses with conventional shellholder arrangements use a spring clip to retain the shellholder in its slot atop the press ram. Get this clip gone! It cocks the shellholder askew.

The solution is to incorporate an o-ring to retain the shellholder in its slot. Get one at any real hardware store. Size that works is usually 7/8-inch outside diameter, 11/16 inside diameter, 3/32 thickness. The o-ring fits into the exterior channel previously occupied by the spring clip. To install a shellholder you just roll the ring down a tad, slide in the holder, and let the ring back up to block its exit out the front.

This modification lets the shellholder sit flat, as it should, and also provides some wiggle room so the case can align itself with the die opening. [Photo from Top-Grade Ammo]
This modification lets the shellholder sit flat, as it should, and also provides some wiggle room so the case can align itself with the die opening. [Photo from Top-Grade Ammo]
2. Sizing die lock ring
Speaking of wiggle room, there’s a whopping lot of it in a 7/8-14 thread set. That’s pretty coarse. Taking up the play created by thread-to-thread gaps goes a good ways toward “straight” installation of a die into a press. There are a couple of ways to help this.

One is to always (always) tighten a die locking collar ring when there is a case inside the die, and the ram is fully extended upward (handle all the way down). This bit of pressure helps to bring the die into straight alignment. Problem is that it also makes the daggone die hard to remove. Just get stern with it. After initial removal, subsequent re-fittings are easy. I use a “strap wrench” (plumbing supply and real auto parts stores have one for you) if it’s stubborn to turn loose after being tightened initally. Pliers result in cosmetic, but not real, damage. Lock rings with wrench-flats are dandy.

Always put an index mark from die lock ring to die body to press top. That’s a simple way to verify return to “zero” when a die is installed back into your press. And ALWAYS install and remove the die holding ONLY the locking ring! Never-ever the die body. Any teeny body rotation within the locking ring, which is easily undetectable, requires repeating the process of die adjustment.
Always put an index mark from die lock ring to die body to press top. That’s a simple way to verify return to “zero” when a die is installed back into your press. And ALWAYS install and remove the die holding ONLY the locking ring! Never-ever the die body. Any teeny body rotation within the locking ring, which is easily undetectable, requires repeating the process of die adjustment.
I prefer clamping lock rings, like these from Forster. Those with a set screw can cock when the screw tightens in against the angled threads.
I prefer clamping lock rings, like these from Forster. Those with a set screw can cock when the screw tightens in against the angled threads.

For these tricks, choose a case that represents your best: get one with the most consistent neck wall thickness.


3. Expander/decapping assembly
There’s some “feel” involved in this one, but it is worthwhile. To get the expander in your sizing die sitting on center, run up a case fully and then slowly withdraw it until you feel the expander lodge inside the case neck. Then put a little pressure down on the handle, in the direction of raising the ram, while you tighten the locking apparatus.

When it’s possible, and it almost always is, secure the pieces-parts when they’re doing their jobs. For instance, tightening the locking rings on a decapping stem when the expander is holding inside the case neck helps bring the stem into straight alignment, and the expander along with it.
When it’s possible, and it almost always is, secure the pieces-parts when they’re doing their jobs. For instance, tightening the locking rings on a decapping stem when the expander is holding inside the case neck helps bring the stem into straight alignment, and the expander along with it.

4. Lock-ring o-rings
Here’s one I suggest but don’t usually follow… Lemmesplain: It works but I prefer these other means because they’re more “secure.” However! Installing an o-ring up under the die body locking ring (sizers and seaters) provides a cushioned flexibility that provides for takeup in the amount and “direction” needed when a case is run up into a die. O-ring size is 7/8-inch inside diameter and a thickness of 1/8-inch.

O-ring trick: the flexible ring allows for some “wiggle room” to help case and die centers match. Trick is reinstalling the die to hold the desired setting, and the index mark really helps. Hold only the lock ring when threading the die in and out!!
O-ring trick: the flexible ring allows for some “wiggle room” to help case and die centers match. Trick is reinstalling the die to hold the desired setting, and the index mark really helps. Hold only the lock ring when threading the die in and out!!

5. Bullet seating die stem
This one is pretty simple: tighten the lock on the stem when there’s a seated bullet run up into the die. Threads are finer on stems than on die bodies, but better is a better. This is for a conventional-style seating arrangement. Those that use a spring-loaded sleeve arrangement, like a Redding Competition Seater, are good to go as are.


The preceding is a specially-adapted excerpt from the book Top-Grade Ammo just released by Zediker Publishing.

Load Testing Insight: 5 “Rules” for Load Work-Up

Facebooktwittergoogle_pluspinterestyoutube

Don’t waste time and money collecting half-boxes of “loser loads.” Here’s how to start and finish load work-up in one day.


Glen Zediker


Last time I talked a little about keeping your ammo pressure-safe, under a range of conditions. Quite a bit of that dealt with observations made during load work-up. So this time I’d like to talk more about the work-up process I use.

The reason for the term “work-up a load” is pretty clear: we’re almost always looking to get the highest velocity we can, safely. High velocity, or, more clear, higher velocity, is usually all good. Shorter time of bullet flight to the target means less drop and drift, and a harder impact.

So working up means increasing propellant charge incrementally until we’re happy. Happy with the velocity or happy that the cases are still able to hold water. Ha. As said last time, it’s vitally and critically important to have a stopping place, a goal to be reached, prior to testing.

I also mentioned an “incremental” load work-up method that I have followed for many years, and it’s served me very well. I do all my testing and work-ups at the range. I load right then and there. I take boxes of sized and primed cases, and my Harrell’s powder meter, and a small press that I c-clamp to a bench. The press, of course contains my seating die. And the most important pieces of gear are a notebook and a chronograph.

load at the range
You don’t have to invest a fortune to take your handloading show on the road. Some c-clamps and one of these little Lee Reloader presses is all you need! And a good powder meter. One with a clamp is handiest, or just mount it to a piece of wood and clamp that down (even a pickup tailgate works just fine).

Before the trip, I have taken the preparation time, done the homework, to know exactly how much “one click” is worth on my meter. It varies with the propellant, but by weighing several examples of each click-stop variation (done over at least 4 stops) I can accurately increase the charge for each test a known amount.

reloading at the range
I map out the incremental values of each click on my Harrell’s meter adjustment drum with the propellant I’ll be testing, and it’s really easy to step up each trial with confidence. I carry the whole kit in a large tackle-type box.

I work up 0.20 grains at a time. Sometimes it’s more if I’m reading a low velocity initially. Since I have a meter with a “Culver” insert, which I trust completely, I actually reference the number of clicks in my notes rather than the weights. I check after the weights when I get back home, and I do that by counting to the setting and weighing the charge. It’s easy enough also to throw a charge into a case and seal it over with masking tape.

I started loading at the range because I got tired of bringing home partial batches of loser loads. And, you guessed it, the partial boxes usually contained recipes that were too hot. The only way to salvage those is to pull the bullets. Tedious. Or they were too low, of course, and fit only for busting up dirt clods. Plus, I’m able to test different charges in the same conditions. It’s a small investment that’s a huge time-saver.

During my work-up, I fire 3 rounds per increment. As it gets closer to done, I increase that to 5. Final testing is done with 1 20-round group. Does 3-round volleys seem inadequate? It’s not if there’s confidence that the rounds are being well-directed and speed is being monitored. If I’m seeing more than 10-12 fps velocity spreads over 3 rounds, I’m not going to continue with that propellant.

Here are a few things I’ve found over the years to better ensure reliable results. Learned, of course, the hard way.

  1. Limit testing to no more than one variable. I test one propellant at a time, per trip. If you want to test more than one on one day, bring the bore cleaning kit and use it between propellant changes. Results are corrupt if you’re “mixing” residues. Same goes for bullets. Otherwise, though, don’t clean the barrel during the test. Don’t know about you, but I fire my most important rounds after 60+ rounds have gone through it, so I want a realistic evaluation of accuracy (and zero).
  1. Replace the cases back into the container in the order they were fired. This allows for accurate post-testing measurements. Use masking tape and staggered rows to identify the steps. I use 100-round ammo boxes because they have enough room to delineate the progress.

    ammo pressure
    Keep track of the cases in the order they were fired. This helps later on back in the shop when the effects can be measured. This little outing here, though, didn’t require a gage to cipher: a tad amount hot on that last little go around (last case bottom row on the right). Thing is, I didn’t load a whole boxful of those chamber bombs to take with me, and that’s the beauty of loading right at the range.
  1. Use the same target for the entire session. (Put pasters over the previous holes if you want, but don’t change paper.) This helps determine vertical consistency as you work up (when you’ve found a propellant that shows consistency over a 3-4 increment range, that’s better than good).
  1. Exploit potentials. If you take the lead to assemble a “portable” loading kit, the possibilities for other tests are wide open. Try some seating depth experiments, for instance. Such requires the use of a “micrometer” style die that has indexable and incremental settings.
  1. Go up 0.20 grains but come off 0.50 grains! Said last time but important enough to say again here. If a load EVER shows a pressure sign, even just one round, come off 0.50 grains, not 0.10 or 0.20. Believe me on this one…

Last: Keep the propellant out of the sun! I transport it in a cooler.

shooting chrony
Chronograph each round you fire. It doesn’t have to cost a fortune to get an accurate chronograph. This one is inexpensive and, my tests shooting over it and my very expensive “other” brand chronograph (literally one cradled in the other) showed zero difference in accuracy. The more expensive chronographs mostly offer more functions. The muzzle-mounted chronos are fine and dandy too.

The preceding was a specially adapted excerpt from the new book, Top-Grade Ammo by Glen Zediker. Check it out at ZedikerPublishing.com or BuyZedikerBooks.com