Tag Archives: glen d zediker

RELOADERS CORNER: Picking Propellants

Facebooktwittergoogle_pluspinterestyoutube

There are a whopping lot of propellants on the market. How do you choose one? Well, usually it’s more than one… READ WHY

PROPELLANT

Glen Zediker

All we ever really want is a propellant that provides high consistent velocity, small groups at distance, safe pressures over a wide range of temperatures, and burns cleanly, and, of course, it should meter perfectly. Dang. I know, right?

Ultimately, propellant choice often ends up as a compromise and it may well be that the smallest compromises identify the better propellants. Getting the most good from your choice, in other words, with the fewest liabilities.

There are two tiers of basics defining centerfire rifle propellant formulas. The granule form can be either spherical (round granules) or extruded (cylindrical granules). Next, the composition can be either single- or double-base. All propellants have nitrocellulose as the base; double-base stirs in some nitroglycerol to increase energy.

There’s been a good deal of effort expended and applied over the past several years to reduce the temperature sensitivity of propellant. Coatings come first to mind, and I use nothing but these “treated” propellants.

This attribute is very (very) important! It’s more important the more rounds you fire throughout a year. A competitive shooter’s score hinges on consistent ammunition performance. Test in Mississippi and then go to Ohio and expect there to be some change in zero, but a change in accuracy or a sudden excess of pressure and that’s a long trip back home. It’s common enough for temperatures to (relatively speaking) plummet on at least one day at the National Matches, so my 95-degree load has to function when it’s 50.

extruded propellant

Some are decidedly better than others in this. There are several propellants I’ve tried and will not use because I didn’t get reliable results when conditions changed. Some gave outstanding groups on target, on that day, at that hour, but went goofy the next month when it was +20 degrees. Heat and cold can influence pressure in a sensitive propellant.

Single-base extruded (“stick”) propellants are my first choice. A good example of one of those is Hodgdon 4895. These tend to be flexible in maintaining performance over a wider range of velocities, related to a wider range of charge weights. For instance, I’ll vary the charge weight of the same propellant for ammo for different yard lines. I’m reducing recoil or increasing velocity, depending on what matters more. Zero and velocity are different, but accuracy doesn’t change.

H4895
There are a few single-base extruded propellants that show impressive flexibility in load levels as well as in different round structures. This is one of the most flexible I’ve used, and I use a lot of it!

Spherical or “ball” propellants (these are double-base) are a good choice for high-volume production, and also tend to be a great choice for highest velocities at safe pressures. These meter with liquid precision. They, however, tend to be less flexible. That means they tend to work best at a set and fairly finite charge and don’t do as well at much less or more than that, and especially at much less than that. More in a minute.

spherical propellant
Spherical propellants tend to be volume sensitive. My experience has been they’ll perform best when the fill level is a good 90-percent. That means there’s a little smaller gap between one that’s good with, say, 50gr bullets and one that works well with 60s. It’s likely to be two propellant choices, not just one. Generally, spherical propellants do their best when loaded near-to-max.

Double-base extruded propellants (sometimes called “high-energy”) do, yes, produce higher velocities at equal pressures compared to single-base but also tend to be less flexible and exhibit performance changes along with temperature changes. Vihta-Vuori and Alliant are the best known for their formulations in these. Double-base usually burns at a hotter temperature (not faster or slower, just hotter) and can increase throat erosion rate. Some double-base spherical propellants claim to burn cooler. I’m not certain that this is a huge selling point, either way, for a serious shooter, but, there it is.

VV540
Double-base extruded propellants are mighty fuels, but, they tend GENERALLY to be more temperature sensitive and also burn hotter. Now. That’s not always true (I think NONE one of this is always true). With Viht. you can have a choice of double- or single-base in the same essential burning rate; N140 is single-base, N540 is double.

All propellants are ranked by burning rate. That’s easy. That’s just how quickly the powder will consume itself. All reloading data manuals I’ve seen list propellant data in order from faster to slower. For instance, if you’re looking at .223 Remington data and start off with tables for 40-grain bullets, you’ll see faster propellants to start the list than you will moving over to the suggestions for 75-grain bullets.

It’s tough to find a perfect propellant for a wide range of same-caliber bullet weights. Faster-burning propellants tend to do better with lighter bullets and slower-burning tends to get more from heavier bullets. That’s all about pressure and volume compatibility. Again, I have found that a single-base extruded propellant will work overall better over, say, a 20-plus-grain bullet weight range than a single choice in a spherical propellant.

scale pan with powder
Extruded propellants vary greatly in granule size, and, usually, the smaller the better. More precise metering. This is VV540, strong stuff, meters well. There are a few now that are very (very) small-grained (like Hodgdon Benchmark).

The idea, or at least as I’ll present my take on it, is that we want a fairly full case but not completely full. I don’t like running compressed loads (crunching a bullet down cannot be a good thing), and excessive air space is linked to inconsistent combustion. We ran tests upmteen years ago with M1As and found that out. Many details omitted, but here was the end: Settling the propellant back in the case prior to each shot absolutely reduced shot-to-shot velocity differences (the load was with a 4895, necessary for port pressure limits, and didn’t fully fill the case).

Generally, and that’s a word I’ll use a lot in this (and that’s because I know enough exceptions), spherical propellants have always performed best for me and those I share notes with when they’re running close to a max-level charge. More specifically, not much luck with reduced-level charges.

Too little spherical propellant, and I’m talking about a “light” load, can create quirky pressure issues. Workable loads are fenced into in a narrower range. This all has to do with the fill volume of propellant in the capped cartridge case, and, as suggested, that’s usually better more than less. That further means, also as suggested, there is less likely to be one spherical propellant choice that’s going to cover a wide range of bullet weights. That’s also a good reason there are so many available.

With some spherical propellants, going from a good performing load at, say 25 grains, and dropping to 23 can be too much reduction. One sign that the fill volume is insufficient is seeing a “fireball” at the muzzle. Unsettling to say the least.

Spherical propellants also seem to do their best with a “hot” primer. Imagine how many more individual coated pieces of propellant there are in a 25-grain load of spherical compared to a 25-grain charge of extruded, and it makes sense.

However! I sho don’t let that stop me from using them! I load a whopping lot of spherical for our daily range days. We’re not running a light load and we’re not running heavy bullet. We are, for what it’s worth, running H335.

So, still, how do you choose a propellant? Where do you start? I really wish I had a better answer than to only tell you what I use, or what I won’t use. There are a lot of good industry sources and one I’ve had experience with, including a recent phone session helping me sort out Benchmark, is Hodgdon. You can call and talk with someone, not just input data. Recommended.

When it’s time, though, to “get serious” and pack up for a tournament, I’m going to be packing a box full of rounds made with a single-base extruded propellant that meters well. As mentioned before in these pages, I have no choice in that, really. I’ll only run the same bullet jackets and same propellant through the same barrel on the same day. I need a propellant that works for anything between 70- and 90-grain bullets.

With time comes experience, and I know I sure tend to fall back on recollections of good experiences. I admittedly am not an eager tester of new (to me) propellants. I have some I fall back on, and those tend to be the first I try with a new combination. There are always going to be new propellants. That’s not a static industry. I may seem very much stuck in the past, but I no longer try every new propellant out there. I like to have some background with a propellant, meaning I’ve seen its results in different rifles and component combinations. Mostly, I ask one of those folks who tries every new propellant…

There is a lot of information on the internet. You’re on the internet now. However! There’s also not much if anything in the way of warranty. If you see the same propellant mentioned for the same application a lot of times, take that as a sign it might work well for you. Do not, however, short cut the very important step of working up toward a final charge. Take any loads you see and drop them a good half-grain, and make sure the other components you’re using are a close match for those in the published data.

One last: Speaking of temperature sensitivity: Watch out out there folks. It is easily possible for a round to detonate in a rifle chamber if it’s left long enough. Yes, it has to be really hot, but don’t take a risk. A rash of rapid-fire can create enough heat. Make sure you unload your rifle! Here’s an article you might find interesting.

CHECK OUT CHOICES AT MIDSOUTH
Hodgdon
Shooters World
Vihtavuori
Alliant

The preceding is a specially-adapted excerpt from Glen’s book Top-Grade Ammo. Available HERE at Midsouth Shooters Supply. Visit ZedikerPublishing.com for more information on the book itself, and also free article downloads.

 

RELOADERS CORNER: 4 Firings In, Part Two

Facebooktwittergoogle_pluspinterestyoutube

Cartridge cases always fail on the “next firing.” Question is which one that might be. Need to know! KEEP READING

beat case
I apologize for the image quality, but these were taken a while ago. Fortunately, for me, I didn’t have anything on hand that shows even close to the beating this one took. Cracked neck, head crack. Rare to see one case with both of the most common failures. It was attacked by an M14.

Glen Zediker

I’d always rather say it all at once, but the realities of tolerance, and space, sometimes mean I have to split a bigger topic into smaller installments. The “tolerance” part is how many pages you all are willing to scroll through!

This multi-part topic is when, and then how, to check after the progress of changes commencing with the firing on a new case. It’s the “progress of degeneration,” in a way of looking at it because the concern is getting a handle on when enough change in the brass has come about to require attention. Or abandonment. As said then, for me that’s 4 firings. That, as said last time, is when I might see changes that need attention. Also as said, that figure didn’t come out of a hat, but from my own notes in running my competition NRA High Power Rifle loads.

The areas most affected are the case neck and case head area. Case neck walls get thicker, and that was the focus last time. Well, the case head area body walls get thinner. Primer pockets get shallower and larger diameter.

As started on: Brass flows during firing. It expands, then contracts, and when we resize the case, it contracts, then expands (a little). This expansion and contraction makes the alloy harder over the entire case, but with more effect in areas of more expansion, and flow. Replace “hard” with its effect, “brittle,” and that’s a clearer picture. This increasing hardness influences its reaction to being sized or otherwise stretched. As with many metals, bend it back and forth enough times and it will break. It will also fail if it loses enough resilience, or thickness, to withstand the pressures of firing.

Case Head
When a case is under pressure during firing, the brass, like water, flows where it can, where it’s more free to move. Of course, the chamber steel limits the amount it can expand. The case shoulder blows fully forward and the case base is slammed back against the bolt face. There is, therefore and in effect, a tug on both ends — it gets stretched. The shoulder area is relatively free to expand to conform to the chamber, but the other end, the case head area, is not. Since that’s the area of the case with the thickest walls, it doesn’t expand “out” much at all. What it does is stretch.

The “case head area,” as I refer to it here, is the portion of the case above the web, which is just above the taper that leads in to the extractor groove. The “area” extends approximately an eighth-inch up the case body.

case pressure ring
Here’s a “pressure ring.” You’ll see this after firing, if you see it. And, if you see it, that case is done. The bright ring indicates excessive stretching, which indicates excessive thinning.
head separation pic
Closer view of another sectioned case. This one here was fixin to pop. 

That portion of the case does not fully expand and grip the chamber, but the area immediately ahead of it does. So the case body expands and grips the chamber, and that last little bit back to the base can and does move. It stretches. If you see a ring circling the case, noticeable because it’s lighter color than the case body, and it’s in this area, I’d say that case is done. The ring will be evident after firing, not after; don’t confuse a shiny ring around the case in this area with what can be normal from sizing, especially if it’s been a hotter load. That is pretty much a scuff from the sizing die squeezing down this expanded area.

And that’s right where a “head separation” occurs. It can crack and also blow slap in two, and that’s the “separation” part of case head separation.

This is a spot to keep close watch on as cases age. It is also the area that is more “protected” by sizing with less case shoulder set-back. That is, pretty much, where the freedom for the stretching movement in this area comes from (the case shoulder creates a gap). However! As said many a time, semi-autos need some shoulder set back for function, and it’s the reason to use an accurate gage to determine the amount of set-back needed.

case head separation
Ultra-high-precision gage, made by me. Not really. It’s a selectively bent paper clip, and running this down inside the case and and then back up the case wall can signal a dip-in in the head area, which signals thinned walls. Feel it? Case is done.

Some folks unbend a paper clip and run it down inside a case and drag it up against the inside case wall as a sort of antenna to see if they detect a dip-in near the head area, which would indicate that the wall in this area has been stretched thinner. If there’s enough to feel it, that case is done.

Since I’m working off this “4 Firings In” checklist, if you’re seeing a sign that a head separation might be nigh in that few uses, chances are the shoulder set-back is excessive, and also too may be the load pressure level.

Primer Pocket
Another case-head-area and pressure-related check is the primer pocket. As said, the primer pocket will get larger in diameter and shallower in depth each firing. As with many such things, the questions are “when” and “how much,” and the main thing, “how much?”

If the pocket gets excessively shallow, and that’s judged by a primer that seats fully but isn’t at least a tick below flush with the case base, there could be function issues. There’s a risk of a “slam-fire” with a semi-auto that uses a floating firing pin, and, if there is actual protrusion, that has the same effect as insufficient headspace.

primer pocket uniformer
A primer pocket uniformer can reset the depth of a shallowed primer pocket to what it should be, but the real test for me is how easily the next primer seats into it. If it’s significantly less resistance, I’ll say that case is done.

Shallower can be refurbished. That’s a primary function of a primer pocket uniformer. Larger diameter, though, can’t be fixed. I’ve mentioned in another article or two that, any more at least, my main gauge of load pressure has become how much primer pocket expansion there’s been. I judge that without using the first gage, well, unless my primer seater is a gage. If a primer seats noticeably easier, that’s the clear clue that the pocket is too big. Another is seeing a dark ring around a fired primer, indicating a little gas leakage.

Measuring primer pockets is a waste of time, say my notes at least. First, it’s not easy to accurately (truly accurately) measure a pocket, especially its diameter, but, that’s not really what matters. It’s how much grip there is to maintain the primer in place during firing.

I pay close attention to resistance in primer seating and won’t reuse a case that’s too easy.

Good deal on what I think is good brass, especially if you’re an AR15 loader — HERE

Glen’s books, Handloading For Competition and Top-Grade Ammo, are available at Midsouth HERE. For more information about other books by Glen, visit ZedikerPublishing.com

Glen’s newest book, America’s Gun: The Practical AR15. Check it out HERE

par15

RELOADERS CORNER: 4 Firings In

Facebooktwittergoogle_pluspinterestyoutube

Along with all the other operations we do to them, cartridge cases also need maintenance. A good question is “when”? That’s next… KEEP READING

old case

Glen Zediker

I tend to write much of what I do for those who reload for production. Those are folks expecting good utility in exchange for the expense and effort: a reliably-performing round of ammunition, over and over again. They’re loading and reloading because they like to shoot. It’s a big bonus to most, and I include myself in this group most of the time, if that good performance comes with a minimum of effort. Clean, size, prime, fill, seat, shoot. Five steps to get to the one thing that matters most: shoot! I am also in another group some of the time, not as often now as I once was, and those folks may add a few more steps before getting to the “shoot” part (case prep mostly).

It would be wonderful if that simple cycle endured without end. But it won’t.

Overall case condition after X-many firings varies A LOT because of a lot of factors, variables. What matters is getting a handle on it. I look over each case each time I load it, but I don’t break out the measuring tools. That’s not neglect. There is never (ever) any excuse for neglect. That’s not what this is about. It’s about working out a responsible, reasonable, and realistic schedule for when to take a close look at the progress in condition that new batch of cartridges cases has followed after some time.

In my experience, which is what’s in my notes, I say that’s 4 firings.

I went through the per-use checks enough times to know the schedule one brand and lot of brass, used with the same loads in the same barrel, follows with respect to changes. And by that I mean when changes require attention. I’m also starting with prepped cases, including trimming, before their first firing.

Let me make clear that I’m not suggesting that 4 firings is maximum case life! What I am suggesting is that this is the point where it’s likely to see measurable influences from use and reuse, and, as such, that it can be measured. That’s what we’re after now: take a check to see what’s happening, and that also is a big help toward getting clues about where and when these changes might get noticeably influential.

So, to be clear: the case has been fired four times, reused three times. Next loading, if there will be one, will be for the fifth use.

chamber reamer
We, or more correctly, our cases, are at the mercy of this thing: a chamber reamer. It sets the amount of space the case can expand into.

Changes
Continuing to use and reuse cases, we’re not really using the same cases each time. The cases change, and much of the change comes from material flow, which is brass.

Here’s how it goes, which is to say here’s how it flows: Case neck walls get thicker. The case head area body walls get thinner, over a short span of the body. Primer pockets get shallower and larger diameter. Overall, the alloy hardens over the whole case.

As gone on about a few times in this spot, there’s going to be more change in cases run through a semi-auto than those used in a bolt-action. That’s because of the necessarily additional (comparatively speaking) sizing and also the additional stress resulting from the firing cycle. There’s more flow because the cases are free to expand more.

drop bullet
A simple, and important, test to check if case necks walls have thickened excessively is to take a fired case and drop a bullet in it. If it won’t drop without resistance, stop! That’s way too much.

The Neck
All case necks expand to whatever the chamber allows. There’s no relationship between that and sized dimension because, clearly, there has to be a small enough neck inside diameter to retain the bullet. It is, though, one of the reasons case necks tend to give up quickest (plus it’s the thinnest-walled area on a case).

The case neck is my primary concern, and the first thing I check. If the walls get too thick it’s possible to cut the space too close between the case neck and the case neck area in the rifle chamber. There might be interference upon bullet release, and that creates excessive pressure, or sure can. All that depends on what the chamber allows for expansion room.

The most simple check is to see if a bullet will freely drop into a fired case neck. If it won’t, stop! Do not reuse that case as-is. A case that won’t pass this no-tool test has excessively thickened.

Somewhere in your notes should be a figure indicating loaded outside case neck diameter, on new brass. This dimension is exclusive of the sized neck diameter, because when the bullet is seated the neck is going to expand to accommodate the bullet. Another check of loaded outside neck diameter will show if there’s been thickening. If an inside neck sizing appliance is used (a sizing button), then that will tell you also, comparing it to what you also recorded for the new case after sizing it. (And it’s a good reason to always run new brass through your sizing die, even if it’s “ready to go” out of the box.)

I hope it’s clear enough why it’s important to “write everything down.” References, standards are big helps.

Direct checks of the neck walls themselves using a suitable tool will show thickening. However! Case necks don’t necessarily thicken the same over the entire height of the case neck cylinder. Remember, the brass is flowing so moves in a direction, and that part of the case has a wave going forward, toward the muzzle. There can and likely will be a tapering from thicker to thinner. Measure at more than one point.

Safety is one thing, and the most important thing, and then the other thing is accuracy. Case neck “tension” needs to be consistent from loading to loading to get reliable accuracy.

Fixing it? An inside case neck reamer is the easiest and most direct means. However! Make double-dang sure you know the numbers and therefore how and at what point to use it! Many are intended for use on fired (not yet resized) necks. Others are a specific dimension that you may or may not be able to specify. Thinning the case neck walls using an outside case neck turner is another direct remedy. A little tedious.

forster reamer
The best way I know to remove material to refurbish overly-thickened case neck walls is an inside case neck reamer. This is a Forster, designed to work with their case trimming base. Trick is knowing the case condition it was designed to be used with. This one is dimensioned for use on fired, unsized case necks (it’s 0.003 under bullet diameter). Run it on a sized neck and way too much brass comes off. Various sizes are available.

Reamer or turner, though, this job hasn’t finished until the refurbished case has been run through your usual sizing die, and checked again for diameter.

Well, so much for this here and now. Out of room! More next time…

See REAMERS HERE

Glen’s books, Handloading For Competition and Top-Grade Ammo, are available at Midsouth HERE. For more information about other books by Glen, visit ZedikerPublishing.com

Glen’s newest book, America’s Gun: The Practical AR15. Check it out HERE

par15

RELOADERS CORNER: Primer Tech

Facebooktwittergoogle_pluspinterestyoutube

It may be the single-most influential reloading component, so learn all about it: the primer! READ MORE

rifle primer

Glen Zediker

This is one component in the collection that might not get all the attention it warrants. That’s because it is the one thing, above all other components, that you don’t want to just swap and switch around.

We’ve all heard cautions about testing new lots of every component, especially propellant, but primers not only change lot to lot, they vary greatly in their influence on any one load, brand to brand. The difference in one brand to the next can equal a good deal more or less pressure, for instance. While there are “general” tendencies respecting the “power” of various-brand primers, always (always) reduce the load (propellant quantity) when switching primers.

This has become more of an issue over the past few years as we’ve faced component shortages. I can tell you without a doubt that going from a WW to a CCI, or from a Remington to a Federal, can have a major influence on a load. I establish that from chronograph readings. No doubt, it’s best to have a good supply of one primer brand and lot that produces good results, and when that’s not possible, it’s a hard sell to convince someone to stop loading ammo and get back to testing. But. It is important. I can tell you that from (bad) experience. How I, and we all, learn most things…

When I switch primers, whether as a test or a necessity, I reduce my load ONE FULL GRAIN. There can be that much effect.

The Thing Itself
A primer is made up of a brass cup filled with explosive compound (lead styphate). Lead styphate detonates on impact. Primers don’t burn – they explode! In the manufacturing process, this compound starts as a liquid. After it’s laid into the cup, and while it’s still wet, a triangular piece or metal (the “anvil”) is set in. When the cup surface is struck by the firing pin, the center collapses, squeezing the explosive compound between the interior of the cup and the anvil. That ignites the compound and sends a flame through the case flash hole, which in turn lights up the propellant.

Primers are dangerous!

Don’t underestimate that. I’ve had one experience that fortunately only created a huge start, but I know others who have had bigger more startling mishaps. These (almost always) come from primer reservoirs, like fill-tubes. Pay close attention when charging up a tube and make sure all the primers are facing the right way, and that you’re not trying to put in “one more” when it’s full! That’s when “it” usually happens. What will happen, by the way, is akin to a small grenade. Static electricity has also been blamed, so keep that in mind.

primer tray
Take care in filling primer tubes! Make double-sure all are facing correctly, and a good primer tray helps. This photo shows the correct orientation for using primers one at a time. To fill a primer tube, make sure the “shiny side” is facing up! Flip the tray over.

Sizes and Types
Primers come in two sizes and four types. “Large” and “small”: for example, .223 Rem. takes small, .308 Win. takes large. Then there are pistol and rifle in each size.

Rifle primers and pistol primers are not the same, even though they share common diameters! Rifle primers should have a tougher cup, and, usually, a hotter flash. Never swap rifle for pistol. Now, some practical-style competitive pistol shooters using their very high-pressure loads (like .38 Super Comp) sometimes substitute rifle primers because they’ll “handle” more pressure, but they’ve also tricked up striker power. That’s a specialized need.

Further, some primer brands are available with a “magnum” option. Some aren’t. My experience has been that depends on the “level” of their standard primer. A magnum primer, as you might guess, has a more intense, stouter flash that travels more “deeply” to ignite the larger and more dense powder column. It reaches further, faster.

large rifle primers

large rifle magnum primers

There’s no real reason not to experiment with “hotter” and “colder” primers, whether the case is stamped “mag” or not. Keep in mind that the experiment is all about the initial flash effect. And keep in mind that this (without a doubt) demands a reduction in the propellant charge at the start.

Over a many years I’ve seen some tendencies respecting flash effect. Using routine cartridges, like .308 Win., single-base extruded propellants tend to shoot well with a cooler spark to start, and the double-base, especially spherical-types, seem to respond best to a hotter flash. Many seem to think that the coating (necessary to form the spherical) and the inherent greater density (less air space between granules) in a spherical demands a little faster start.

Flash consistency is very important, shot to shot. The consistency of every component is important: bullet weights, diameters, case wall thicknesses, and all the way down the list. We’re hoping to get more consistent behavior from a “match” or “benchrest” primer, and we’re paying more for it. I can tell you that some brands that aren’t touted as “match” are already consistent. That all comes from experience: try different primers, just respect the need to initially reduce the load each test. I can also tell you that my notes tell me that the primer has a whopping lot to do with how high or low my velocity deviations plot out.

One last: there are small variations in primer dimensions (heights, diameters) among various brands. These variations are not influential to performance. But! Small diameter variations can influence feeding through priming tools. This can be a hitch especially in some progressive loading machines. Manufacturers usually offer insight (aka: “warnings”) as to which are or aren’t compatible, so find out.

Check out Midsouth products HERE
Primer trays HERE

This article is adapted from Glen’s books, Handloading For Competition and Top-Grade Ammo, available at Midsouth HERE. For more information about other books by Glen, visit ZedikerPublishing.com

RELOADERS CORNER: What I do…

Facebooktwittergoogle_pluspinterestyoutube

There are a lot of ideas and options when it comes to loading the “most important” ammo. Here’s the 5-step process I ended up with… READ MORE

dial indicator

Glen Zediker

I spend a lot of time telling everyone else what they should do, and probably more time telling them what not to do, or what they could do… I thought it might be best to tell you all exactly what it is that I do to prepare a batch of ammo for a tournament.

That’s a quick way to show you what, clearly and obviously, matters to me. I admit: I don’t always do all the things that I talk about. A big part of my role here is to pass along information, answer questions before they’re asked, in a way of looking at it. There’s information, and then there’s action, and that’s not a contradiction, to me. For instance, I can tell you all about case neck turning, and metplat uniforming, and many other preparation steps. I have done them all, sometimes do them, but dang sho not always.

Believe me: I have tried everything and much, much more than I’ve ever talked about in these paragraphs.

Following is what I have found works to my satisfaction. Since I’m dealing with a fair amount of cartridges at any one time, there is, no doubt, a time and effort element that’s important to me. In other words, what’s coming next are the things I really think I must do to give my score the best boost I can reasonably give it.

Step One: Get my cases together and size them. I load in 100-round batches, so I start with five boxes, or whatever corresponds to 100 rounds. Without so much as a second glance, I run them all through my full-length sizing die: lube each and cycle it through. If nothing else, most new cases are not nearly ready to load. The case necks are usually banged up, not round, so at the least I’d need to size the inside and outside of the case neck, and I’ve found that, while other appliances will suffice for that, it’s just easiest to use my sizing die.

Step Two: I trim them all. This isn’t done as any matter of safety, just consistency. I set my trimmer to at the least touch each case mouth. This is very important! The next prep steps rely on having cases that are all the same length.

case trimming

Step Three: After chamfering inside and outside (I use a 17-degree on the inside and a standard tool for the outside) I run a flash hole uniformer through each. This is why it’s important to have them all the same height. That way the uniforming tool cuts to a consistent depth.

inside uniformer
After full-length sizing all my new cases (to mostly get the necks shaped up), I trim all the cases to ensure length consistency to start, because the next procedure, inside flash hole deburring, demands it. Shown is from Hornady. CHECK IT OUT HERE

Step Four: Primer pocket uniforming. I run each through this process. Now, I have had some lots of brass that make this normally simple process a chore, and that’s because the reamer is too snug a fit to the pocket. We all know that primer pockets are at their smallest on new cases. That is, by the way, one reason I’ve mentioned that the primer pocket “feel” is a leading indicator after the first firing as to the pressure level of the load. In keeping, there are times when I wait until recycling the first-fired cases before running the uniformer. It depends on how readily the cases will accept the reamer.

primer pocket reamer
Primer pocket uniforming is an important step in my own process, but sometimes I wait until the first-firing. Depending on the tool used, and how much power can be applied to assist, this job can be a chore on a tight pocket. Shown is a Lyman tool. CHECK OUT TOOLS HERE

Note: I consider my “best” ammunition to be that which I load on my once-fired cases. At the same time, I won’t hesitate to use new cases for a tournament (but not for a Regional or bigger event). Over a whopping lot of time keeping notes, my “second-firing” rounds tend to shoot a tad better, but it’s a miniscule amount. That’s why I don’t really sweat over the primer pockets on the first go-around.

Step Five: Roll them all! I run all the cases through a concentricity fixture, aka: spinner, to check runout. I segregate on the following criteria: “flatliners” no visible runout, less than 0.001, 0.001, up to 0.0015, more than that… Five piles. One reason I do 100-round batches is because I need, technically, 88 rounds for a tournament. Since I am using “name-brand” brass, I easily find my 44 prone-event cases that are going to be no more than 0.001 out of round. The remainder are proportioned better to worse for the 200 yard events. It’s not that I don’t think each round matters, because it does, and, honestly, the 200-yard Standing event is what wins a tournament, but that’s way on more on me than the ammo. A case with 0.015 runout is not going to cause a “9.” That case will produce groups way inside the X-ring.

Co-Ax Case and Cartridge Inspector
I segregate using a runout indicator, a tool shown before in these pages. Some argue, logically, that the best way to find cases with the most consistent wall thicknesses is to measure wall thickness, but, my experience has shown that, ultimately, concentricity is the result of wall thickness consistency. Sho is faster. Shown is a Forster Co-Ax Case & Cartridge Inspector

Now. I fully realize that segregating by runout, concentricity (“centeredness”), is not the same as actually measuring case neck wall thicknesses. However! “Flat-liners” are what ultimately result from consistent case neck walls. Since I have also sized the inside of the case neck, not just the outside, the spinner does give an accurate indication of case neck wall consistency.

case segregation
After sorting by runout, here’s what I get, or what I got once… These were graded (left to right) 0.0000 (no perceptible runout), up to 0.0010, 0.0010, 0.0015, and more than that. So, here, there were 37 cases that were at or near the level of neck-turned cases, and another 37 showing only 0.001, but way on easier.

Since it’s often the night before that I’m doing this, spinning is way on faster than measuring…

Then I prime, fill, seat. Get some sleep.

This article is adapted from Glen’s books, Handloading For Competition and Top-Grade Ammo, available at Midsouth HERE. For more information about other books by Glen, visit ZedikerPublishing.com