Tag Archives: muzzle velocity

RELOADERS CORNER: Velocity Consistency, Part One

Facebooktwittergoogle_pluspinterestyoutube

Shot-to-shot muzzle velocity consistency is almost always a high-ranking goal for the handloader. But what about when it’s just awful? READ MORE

chronograph display

Glen Zediker

Last edition the topic was a wide-scope look at propellants, and the underlying point was how to get started, how to choose one. There’s not a perfect answer to that, or not one I can warrant as absolutely decisive.

Propellant choice often comes down to experience (good and bad), and that’s one reason that many of us, and me most definitely, tend to stick with a few, and those also are the first we’ll try when starting up with a new project. It’s also one reason we might be hesitant to try a propellant again if it didn’t work well the last time. I have those hesitations.

There are also criteria that we’d all like to have met, and, as also said last time, sometimes those have to be ranked or weighted. We may not find the maximum velocity with the smallest group size with one propellant, and, for me, group size gets the most weight. That’s why I said that the best choice is often the one with the fewest compromises, and that’s assuming there’s likely to be some compromise, somewhere. And that’s a fair and wise assumption.

One criteria that I and others have pretty high on our lists is velocity consistency. One measure of a “good load” is low variations in measured muzzle velocities. This, without a doubt, is of more importance the more distant the target.

The propellant that tested showing the lowest shot-to-shot velocity deviation does not necessarily mean that load combination is going to be the most accurate. One reason it’s important might not only to do with on-target accuracy as it does with providing clues about either the handloading protocols we’re following or the suitability of the component combination we’re using.

This article will focus more on that last — suitability of the component combination — and more to follow later will be dedicated to the performance component of consistent velocities.

I got a letter just before doing this article asking about reasons for seeing high velocity deviations. This fellow, a loyal reader of my books, was using the same component combinations and tooling advice I take myself and also publish, and not getting good results. As a matter of fact, his results were horrid. He was seeing deviations, shot-to-shot, in the vicinity of 100 feet per second (fps), plus. That’s huge.

After much time spent testing all this to collect enough notebook entries to think I have some handle on it, a half grain (0.50 gr.) of propellant in most small- to medium-capacity cases (say from .223 Rem. to .308 Win.) is worth about 40 fps. Given that, 100 fps difference is not likely to come from a propellant charge level variance.

Another reader posted a comment-question last article here regarding how to know if aged components were still good, still performing as they should, and this is a place to start looking if we’re seeing radical inconsistencies.

Two questions at the same time, as I’ve said before, usually point me toward a topic.

Moisture is the enemy in propellant and primer storage. The “cool dry place” is hard to come by, around these parts anyhow. I’ve had propellant go bad after having been stored in resealed containers. So far, I haven’t had any lose its potency after many years of storage in the factory-sealed containers.

“Go bad” can mean at a couple of things, by the way. One is that the propellant ages to the point that it changes. If propellant “spoils” it smells bad! It will have an acrid aroma. Don’t use it. Another way it goes bad is pretty easy to tell: it clumps. That is too much moisture. Don’t use it. Put it out in the garden, it’s a great fertilizer — honest.

Primers? It’s hard to tell… Bad primers still appear good.

My letter-writer’s huge velocity deviations were solved by a change of primer, and, mostly, a box of fresh primers. I kind of knew that was the component-culprit because he was having the same results or effects from different propellants.

Primers should be stored in air-tight containers, which will be something other than the factory packaging. Primers are “sealed” but that’s a lightweight assurance. Touching them, for instance, won’t hurt them, contrary to rumors, but more prolonged exposure to excessive moisture can and will take a toll, and its effects are very likely to be as inconsistent as the performance of the compromised primers.

Another strong caution: Always remove, or never leave, however you prefer, propellant in a meter. After you’re done with the loading for the day, return it to its storage container and cap it back tightly. Same with primers. Any left over in the priming tube or tray should go back to safe storage. Clearly, this all has a lot to do with the environmental conditions of your loading-storage area.

Out of curiosity, I filled a case with some small-grained extruded propellant and left it sit out in my shop. It was clumped when I checked it next day (24 hours). I had to get a pipe cleaner (nearest handy tool) to get it all out of the case. I don’t store propellant or primers in my shop, and that’s the reason… Yes, we have some humidity in my part of the world.

Excluding those obvious issues, what makes some combinations produce higher or lower velocity consistencies takes some experimentation to improve (or give up on).

Sometimes (many times) this all seems more like art than science. It is science, of course, but it’s not tidy; it can’t always, or even often, be forecast.

I’ve seen the biggest effect from a primer brand change. I also, though, don’t swap primer brands around each time I do a load work up and the reason is that there are other attributes I need from a primer. Since I’m loading nearly always for a semi-auto, an AR15 specifically, I have to use a “tough” primer, and that also means one that will accept near-max pressure without incident.

Point is that if you’re running a rifle/ammo combination that isn’t limited by either propellant choice or primer choice, you might very well see some influential improvements by trying a different primer (after getting the propellant decided on). Do, always, reduce the charge at least a half grain before using a different primer brand — primer choices also decidedly influence velocity and pressure levels. Again, in my experience, more than you might imagine.

Next time, more about the performance component of consistent velocities, and a whopping lot more about how to improve that.

Check Midsouth storage solutions HERE

The preceding is a specially-adapted excerpt from Glen’s book Top-Grade Ammo. Available HERE at Midsouth Shooters Supply. Visit ZedikerPublishing.com for more information on the book itself, and also free article downloads.