Tag Archives: pressure

Reloaders Corner: AR15 Chamber Options

Facebooktwittergoogle_pluspinterestyoutube

It’s vital to understand “which” chamber is in your AR15. What you don’t know can create big problems. Here’s why.


Glen Zediker


I’ve talked over or at least touched upon this topic, here and there, in other articles. And this week I got four phone calls asking for advice on “which” AR15 chamber I’d recommend. I guess that sort of spurred creation of this article. My primary goal (always) is to answer questions, and ideally before they are asked. So…

NATO mark
A TRUE NATO load always has this mark on its base: the cross-in-a-circle stamp. Some commercial ammo that appears to be mil-spec may or may not be, but err on the safe side.

There are a few options today, and, no, it never was “simple.” There have always been two distinct chambers cut for .223 Remington and 5.56x45mm NATO. And that’s the difference right there! See, .223 Rem. is a commercial round, 5.56 is a mil-spec round. Yes. They are “the same,” but they’re not. The difference is in how these two are loaded with respect to pressures. NATO is a whopping lot hotter. To the tune of +15,000 PSI.

The differences in the chambers are, pretty much, that a NATO has a significantly longer throat or leade or freebore, whichever term is preferred. This is the area in a chamber that extends beyond the case neck cut.

Chamber-All gage
I use a Hornady LNL OAL gage to find out exactly the length of the chamber throat. Get one at Midsouth. This read shows “NATO” by the way. Sierra 80gr MatchKing at 2.550 inches to touch the lands. Wylde should read 2.475. SAAMI-minimum will (usually) be 2.395.

This area in a chamber accepts the initial gas expansion, so, in one way, it can be looked at like an expansion chamber. More room for expanding gases effectively reduces stress on the case. When this area is lengthened, there’s more room, less pressure build. When this area is shortened, there’s less room, more pressure build.

As said, .223 Rem. is short, NATO is long. Take a NATO-spec round and fire it in a .223 Rem. chamber and there’s too much pressure. The .223 Rem. will “fit” just fine; there’s no influential differences otherwise in chambering specifications between .223 Rem. and 5.56.

You’ve probably heard all that before. It’s very important to know. “Which” chamber affects making loaded ammo choices, and also in interpreting reloading data.

NATO pressure
Here’s “real” NATO fired in a commercial .223 Rem. chamber. Ouch. The imprints and general beating the case head shows are the result of the additional pressure in the NATO loading, and the .223 Rem. chamber’s inability to excuse that much extra pressure.

Short history as to the reasons these two chambers exist: .223 Rem. in civilian, commercial application was a varminting-type round, along the lines of .222 Rem. When SAAMI (Sporting Ammunition and Arms Manufacurers Institute) laid down the specifications for that round it did so based around the prevalent short .224 bullets of the day, which were often 52-grain flatbase designs. For best accuracy with the little bullets, the throat was kept short, decreasing the distance the bullet had to travel to engage the lands or rifling. Some, most, me included, call this chamber a “SAMMI-minimum.” The mil-spec ammo assembled for M16s used a 55-grain boat-tail loaded to a higher velocity, and the longer throat was specified to handle the extra gas.

What matters is knowing that you don’t have a .223 Rem. chamber. A NATO can handle anything.

Most AR15s I’ve handled in the past good long while have NATO chambers. It’s the only thing that makes any sense for someone, anyone, who wants to fire sto-bot ammo. Not all the mil-type commercial loads (like the “white box” varieties) are true NATO spec, but if the ammo is not marked “.223 Rem.” it might be a tad amount to a lot hotter than a short-throated gun should handle. True NATO ammo has a distinct marking on the case base.

There is now another what’s become “standard” chamber for AR15s, and that’s the Wylde. Named for AR15 accuracy pioneer Bill Wylde, this reamer specs fall between SAAMI-minimum and NATO. Bill started cutting these chambers for NRA High Power Rifle contestants who needed more room in the throat to accept the long 80-grain bullets but not so much room that the shorter 69-grain bullets were having to leap a gorge to engage the lands. A compromise. A Wylde is a good chamber, and a good choice.

Compare .223 chambers
Here’s the best way to see what’s going on with AR15 chambers. These are Sierra 80-grain MatchKing bullets loaded to an overall cartridge length that has the bullet touching the rifling. Left to right: SAMMI-minimum .223 Rem.; Wylde; NATO. Wahoo. Big, big differences. There’s a little more than 0.150 inches between the SAAMI-minimum and the NATO and that space in the throat handles the extra PSI of NATO-spec loadings. It is also, by the way, how to know (or one way to know) the actual “length” of a chamber throat.

Here’s how it breaks down, according to me:
SAAMI-minimum or commercial .223 Rem. chamber is good for those who are wanting the best accuracy from light bullets. Can’t run mil-surplus ammo or NATO-spec commercial though.

NATO is for anyone who wants to shoot anything and everything out there safely.

NATO stamp
There’s a few ways I’ve seen “NATO” marked on barrels, and I’ve seen a good number of barrels that aren’t marked at all. That’s terribly irresponsible. Look for “5.56” since that seems to have become the more common way to denote “NATO.”

Wylde is more or less an “Improved NATO,” and my experience has been that it will safely handle true NATO loads, even if that’s not its intended design. I base that on spent case condition. It will shoot a little better than a NATO with lighter, shorter bullets. The Wylde is available more and more commonly now from different manufacturers and in “drop-in” accessory barrels.

winchester .223 ammo
If you have a “.223 Rem.” stamp on your barrel don’t feed it any ammo that is not clearly likewise marked “.223 Rem.” Should say the same on the case headstamp. If it doesn’t read “.223 Rem.” do not fire it in a barrel stamped “.223 Rem.” This ammo is safe for any AR15. If you don’t see a stamp on your barrel, find out…or just fire .223 Rem.

The preceding was adapted from Glen’s newest book, Top-Grade Ammo, available here at Midsouth. For more information on this book, and others, plus articles and information for download, visit ZedikerPublishing.com

5 Steps to “Pressure-Proofing” Handloads

Facebooktwittergoogle_pluspinterestyoutube

Here’s a few ideas on how to proceed in load testing to find the safe maximum velocity, and keep it safe…

We’ve chosen the sometimes twisting path to becoming handloaders because we want to improve on-target results. The difference between a handloader and a reloader? My wise-crack answer, which is honest, is that handloaders start off with new brass… We’re not about to shoot factory ammo.

Part of the process of developing the load we’re seeking is learning how to safely set a cap on its pressure. Most of us don’t have pressure-testing equipment, so we rely on measurements and observation to know when we’re at the limit. The goal often, all other things being the same, is to find the highest velocity we can get. Less drift and drop, shorter time of flight, all good. However! Knowing that the maximum tested velocity is also going to be safe over the long haul is a much narrower line to walk.

There’s not room here to cover every pressure check, all the symptoms that can point out over-pressure ammo, but I’ll share my two leading indicators: primer pockets and velocities.

  1. Always start load development with new brass! There are a few reasons, but the leading one related to this material is that the primer pockets will be at their smallest. So. Fire the cases, size the cases, and seat new primers. It takes a little experience, which means a few times through this process, but my leading indicator of pressure is how easily the primers seat. They’ll go in easier than on the first use, but if there is much less to very little resistance felt the second time around, that load is over-pressure. Period. The case head has expanded (I put a max of 0.0005 on expansion, when it’s measured with a micrometer). The more you use the same cases and repeat this process, the sooner you’ll get a handle on the feel to know when the primer pocket has overly expanded.
seating primer to check pressure
My primary gauge for pressure is primer seating — how easily a new primer seats into a once-fired case. This is an indication of case head expansion. It won’t be as tight as new, but it should still be snug. A low-leverage tool, like this Forster Co-Ax, increases the feel and feedback of this operation.
  1. Jump back, don’t step back. If you encounter a pressure symptom, come off a “whole” half-grain. Not a tenth or two. And if you see it again, come off another half-grain. Folks, if anyone thinks the difference between over-pressure and safe-pressure is 0.10-grain, that same little bit exists in the difference in 20-degrees ambient temperature with many propellants. Don’t cut it that close. Keep the long-haul in mind.
  1. Select a temperature-insensitive propellant (related to the above). There will be one out there you’ll like. I use a single-base extruded (stick) propellant when loading for the season. The propellants I choose are coated to help reduce temperature-induced changes. That season is going to span a 50+-degree range, and I don’t want August (or October) to force me back to the loading room… Temperature sensitivity works “both” ways, by the way… Hot or cold can induce pressure increases.
  1. Read the speed on each and every round tested. Beforehand, I have to assume you’ve gotten an idea in mind of what you’re looking to get for a muzzle velocity. If not, do that… A journey of this nature has to have a destination. If not you won’t know when you get there. If you are reading velocities more than 40-50 feet per second over a published maximum, that’s a flag. That 40-50 fps is usually about a half-grain of most propellants in most small- to medium-capacity cases. Certainly, there are all manner of reasons some combinations can vary, but, despite what your mother might have told you, you are really not THAT special…
  1. Don’t assume anything. If you have one round out of many that “suddenly” exhibits pressure symptoms, don’t guess that it’s just a fluke. It’s not a fluke. You finally saw it. Overwhelming chances are that the load is over-pressure and has been over pressure, and the question is how much for how long? Back it off. (The way you know it might have been a fluke, and that happens, is again based on how close to a velocity ceiling it is: if it’s a real mid-range velocity load, it might have been a fluke.)
primer indicators for over-pressure ammo
Some over-pressure indications are pretty clear. Left to right: new, nice and safe (notice there’s still a radius on the primer edge), cratered and flat, yikes! It’s another article, but not all piercings are caused solely by high-pressure ammo; an overly large firing pin hole size in an AR15 bolt contributes.

One last about primer appearances. Usually the first thing a handloader will do after firing a round is look at the primer. I do. No doubt, if the primer is flattened, cratered, pitted, or pierced that’s a honking red flag, and the immediate response is, you guessed it, come off a “whole” half-grain. However. Small rifle primers (especially some primers in some cartridges) do not exhibit the common over-pressure appearances. They can look just fine and shiny until they blow slap out. If you ever see anything that looks like a pressure symptom, back it off; however, don’t assume a load can’t be running hot if the primers don’t show it.

over pressure ammo, primer appearance
Here’s what I mean about primer surface indications not always revealing high pressure. The middle one is an incredibly over-pressure load fired through one of my AR15 race-guns with an extra-heavy bolt carrier. Primer looks just fine. Right hand case is what happened without the extra weight. Neither case would hold a primer after this one firing.

Back to the start: primer seating and velocity are the leading indicators.


The preceding contains specially-adapted excerpts from the new book “Top-Grade Ammo” by Glen Zediker and Zediker Publishing. See it by visiting ZedikerPublishing.com.