Tag Archives: Reloaders Corner

RELOADERS CORNER: Improving Die Performance: 4 Simple Modifications

Facebooktwittergoogle_pluspinterestyoutube

Here are 4 low-to-no-cost setup tricks that will improve the concentricity of your loaded ammo. READ MORE

Glen Zediker

Cartridge cases and reloading dies all have centers. Trick is getting the centers to agree. When they do then that’s an asset to “concentricity,” and that’s attaining a major goal in the process of making better ammunition. A part that’s under pressure and moveable, such as a cartridge case being sized or a bullet being seated, moves toward a path of least resistance. If all associated tooling is “straight,” and the case itself is uniform, then the result is “straight.”

Accepting existence of tolerances and misalignments, taking steps to help two conflicting centers come close together comes from providing some free-play in the apparatus. I call it “floating,” and it serves to help, and here are a few ways.

To be clear: free-floating can help in two ways. One is to build-in float within the tool, and another is to create float and then use that to better center a tool. I’ll explain…

shellholder trick

1. Shellholder
Reloading presses with conventional shellholder arrangements use a spring clip to retain the shellholder in its slot. Remove it! It sits the shellholder off on an angle.

Get to a (real) hardware store and get an o-ring to secure the clip. The o-ring goes around the slot previously occupied by the clip. To install the shellholder just roll the ring down, slide in the holder, and the o-ring will pop back up to block  shellholder exit. Normally, the size needed is 7/8-inch outside diameter, 11/16 inside diameter, 3/32 thickness.

With the clip gone, the shellholder sits flat, as it should, and since the shellholder is free to move also allows some “wiggle room” so the cartridge case can center itself as it enters the die. This honestly makes a positive difference, especially in bullet seating, it seems.

NOTE: for these next “tricks,” choose a case that represents your “best,” one that’s got the most consistent neck wall thickness.

indexing dies on reloading press
Always put an index mark from die lock ring to die body to press top. That’s a simple way to verify return to “zero” when a die is installed back into your press. And ALWAYS install and remove the die holding ONLY the locking ring! Never the die body. Any bit of body rotation within the locking ring requires repeating the process of die adjustment.

2. Sizing die lock ring
Speaking of “wiggle room,” there’s just a little too much of that in a 7/8-14 thread. It’s pretty coarse. Taking up the play created by thread-to-thread gaps results in “straighter” die installation.

Always (always) secure a die body locking ring when there is a case inside the die, and with the ram in its fully upward position (press handle all the way down). This bit of pressure helps bring the die into better alignment. It also makes the die difficult to remove after snugging down the lock ring. Just get stout on it, and, after initial removal, subsequent re-fittings are easy. I use a “strap wrench” (plumbing supply and auto parts stores will have one). “Channel-Lock” pliers also work, but result in cosmetic, but not real, damage. Lock rings with wrench-flats are the bomb.

Before initial removal of the die after the snug-up step, draw an indexing mark from the die body to the die lock ring to the press top. That’s a simple way to return to “zero,” and also to know if anything got out of kilter. Use a paint marker.

3. Sizing button (expander) / decapping assembly
To get the sizing button in a sizing die holding on center, loosen the decapping stem lock nut and run a case fully up. Then slowly retract it until you feel the button enter and lodge into the case neck. Now. Put just a little pressure back in the “up” direction (down on the press handle) and then tighten the decapping stem lock ring.

This really makes a difference, by my notes.

adjust sizing die expander
When it’s possible, and it almost always is, secure the pieces-parts when they’re doing their jobs. For instance, tightening the locking rings on a decapping stem when the expander is holding inside the case neck helps bring the stem into straight alignment, and the expander along with it.

4. Bullet seater
Follow the same die-body-lock trick, after a bullet has been seated, and also just in the same as described for centering the sizing button (just keep the pressure “up” rather than retracting the handle) while you lock the seating stem. Flushing the die body makes a difference. Centering the seating stem may or may not, depending on the style of seating die you have. The “sleeve”-type seaters (like the Redding Competition) are already in alignment so the seating stem itself can’t be influenced. As said, the body can get a help.

index sizing die
O-ring trick: the flexible ring allows for some “wiggle room” to help case and die centers match. Trick is reinstalling the die to hold the desired setting, and the index mark really helps.

One more: Lock-ring o-rings
Here’s another trick I can suggest, but don’t really use… That’s because it, indeed “works,” but I prefer these other means. The trick: install an o-ring under the die body locking ring (for sizers and seaters). This allows some movement, positioning flexibility, in helping a case center as it’s entering the die.

If you do this one, most definitely index-mark the die ring to the die body and then the ring to the press top, as suggested. Never touch the die body itself to thread in or out the die. Hold only the lock ring! (And that’s true regardless.) O-ring size is 7/8-inch inside diameter and a thickness of 1/8-inch.

NOTE: My topics over the past few editions have tended be a tad amount “nostalgic,” and there’s some reason. I just finished a new book, and this one took me way on back to the start of when I discovered reloading, which coincided with discovering my first AR15. It’s called “America’s Gun: The Practical AR15.” It will be available here soon, but not just yet. But go take a look! Information is on my web site HERE. I’m really proud of it. 

This article is adapted from Glen’s books, Handloading For Competition and Top-Grade Ammo, available at Midsouth HERE. For more information about other books by Glen, visit ZedikerPublishing.com

RELOADERS CORNER: What I do…

Facebooktwittergoogle_pluspinterestyoutube

There are a lot of ideas and options when it comes to loading the “most important” ammo. Here’s the 5-step process I ended up with… READ MORE

dial indicator

Glen Zediker

I spend a lot of time telling everyone else what they should do, and probably more time telling them what not to do, or what they could do… I thought it might be best to tell you all exactly what it is that I do to prepare a batch of ammo for a tournament.

That’s a quick way to show you what, clearly and obviously, matters to me. I admit: I don’t always do all the things that I talk about. A big part of my role here is to pass along information, answer questions before they’re asked, in a way of looking at it. There’s information, and then there’s action, and that’s not a contradiction, to me. For instance, I can tell you all about case neck turning, and metplat uniforming, and many other preparation steps. I have done them all, sometimes do them, but dang sho not always.

Believe me: I have tried everything and much, much more than I’ve ever talked about in these paragraphs.

Following is what I have found works to my satisfaction. Since I’m dealing with a fair amount of cartridges at any one time, there is, no doubt, a time and effort element that’s important to me. In other words, what’s coming next are the things I really think I must do to give my score the best boost I can reasonably give it.

Step One: Get my cases together and size them. I load in 100-round batches, so I start with five boxes, or whatever corresponds to 100 rounds. Without so much as a second glance, I run them all through my full-length sizing die: lube each and cycle it through. If nothing else, most new cases are not nearly ready to load. The case necks are usually banged up, not round, so at the least I’d need to size the inside and outside of the case neck, and I’ve found that, while other appliances will suffice for that, it’s just easiest to use my sizing die.

Step Two: I trim them all. This isn’t done as any matter of safety, just consistency. I set my trimmer to at the least touch each case mouth. This is very important! The next prep steps rely on having cases that are all the same length.

case trimming

Step Three: After chamfering inside and outside (I use a 17-degree on the inside and a standard tool for the outside) I run a flash hole uniformer through each. This is why it’s important to have them all the same height. That way the uniforming tool cuts to a consistent depth.

inside uniformer
After full-length sizing all my new cases (to mostly get the necks shaped up), I trim all the cases to ensure length consistency to start, because the next procedure, inside flash hole deburring, demands it. Shown is from Hornady. CHECK IT OUT HERE

Step Four: Primer pocket uniforming. I run each through this process. Now, I have had some lots of brass that make this normally simple process a chore, and that’s because the reamer is too snug a fit to the pocket. We all know that primer pockets are at their smallest on new cases. That is, by the way, one reason I’ve mentioned that the primer pocket “feel” is a leading indicator after the first firing as to the pressure level of the load. In keeping, there are times when I wait until recycling the first-fired cases before running the uniformer. It depends on how readily the cases will accept the reamer.

primer pocket reamer
Primer pocket uniforming is an important step in my own process, but sometimes I wait until the first-firing. Depending on the tool used, and how much power can be applied to assist, this job can be a chore on a tight pocket. Shown is a Lyman tool. CHECK OUT TOOLS HERE

Note: I consider my “best” ammunition to be that which I load on my once-fired cases. At the same time, I won’t hesitate to use new cases for a tournament (but not for a Regional or bigger event). Over a whopping lot of time keeping notes, my “second-firing” rounds tend to shoot a tad better, but it’s a miniscule amount. That’s why I don’t really sweat over the primer pockets on the first go-around.

Step Five: Roll them all! I run all the cases through a concentricity fixture, aka: spinner, to check runout. I segregate on the following criteria: “flatliners” no visible runout, less than 0.001, 0.001, up to 0.0015, more than that… Five piles. One reason I do 100-round batches is because I need, technically, 88 rounds for a tournament. Since I am using “name-brand” brass, I easily find my 44 prone-event cases that are going to be no more than 0.001 out of round. The remainder are proportioned better to worse for the 200 yard events. It’s not that I don’t think each round matters, because it does, and, honestly, the 200-yard Standing event is what wins a tournament, but that’s way on more on me than the ammo. A case with 0.015 runout is not going to cause a “9.” That case will produce groups way inside the X-ring.

Co-Ax Case and Cartridge Inspector
I segregate using a runout indicator, a tool shown before in these pages. Some argue, logically, that the best way to find cases with the most consistent wall thicknesses is to measure wall thickness, but, my experience has shown that, ultimately, concentricity is the result of wall thickness consistency. Sho is faster. Shown is a Forster Co-Ax Case & Cartridge Inspector

Now. I fully realize that segregating by runout, concentricity (“centeredness”), is not the same as actually measuring case neck wall thicknesses. However! “Flat-liners” are what ultimately result from consistent case neck walls. Since I have also sized the inside of the case neck, not just the outside, the spinner does give an accurate indication of case neck wall consistency.

case segregation
After sorting by runout, here’s what I get, or what I got once… These were graded (left to right) 0.0000 (no perceptible runout), up to 0.0010, 0.0010, 0.0015, and more than that. So, here, there were 37 cases that were at or near the level of neck-turned cases, and another 37 showing only 0.001, but way on easier.

Since it’s often the night before that I’m doing this, spinning is way on faster than measuring…

Then I prime, fill, seat. Get some sleep.

This article is adapted from Glen’s books, Handloading For Competition and Top-Grade Ammo, available at Midsouth HERE. For more information about other books by Glen, visit ZedikerPublishing.com

RELOADERS CORNER: 3 Helps For Easy Load Work-Ups

Facebooktwittergoogle_pluspinterestyoutube

Read this before you start the process of working up a load for your new rifle! It could save you huge amounts of time and money… Find out more!

Glen Zediker

Spring is around the corner. Well, if you walk way out into the street and squint really hard you can at least think you see it… Well it’s coming soon enough, at least, now’s a good time to get ready.

I never have been big on the personal value of published load data. The data I’m referring to is that from propellant and other component manufacturers, and also from articles done by independents. I think all such information, at most, provides a place to start, and it also gives some ideas on tendencies and cautions, and provides means for comparisons. But. I don’t think it can be taken straight to the loading bench with any guarantee of success, or of attaining “advertised” performance. And I say that not because I don’t think these folks don’t know what they’re doing. They do! It’s because, after way more than enough experience in proving myself right, I can tell you absolutely that their rifle is not your rifle! Neither, necessarily, are their propellant, primer, case, or bullet. Always take careful note of the barrel and components used for any published test data, and compare them to yours. In later comparisons of my notes with published data, sometimes I’m higher, often times I’m lower, and enough times I’m way lower… That’s the main concern there.

It’s not at all difficult to learn to develop your own loads, to essentially write your own loading manual.

To do this efficiently, you need to learn to load at the range. Right, right there near to where you’re testing. An unremarkable investment in a few tools and a little creativity can provide a way to take your show on the road.

Lee press mounted outdoors
You don’t have to invest a fortune to take your show on the road. A C-clamp and one of these little Lee Reloader presses is all you need! And a good powder meter. One with a clamp is handiest, or just mount it to a piece of wood and clamp that down (even a pickup tailgate works just fine). One clamp is adequate on the press since bullet seating is all in the “down” direction and not much force is needed.

The reason to do this is because it provides a way to precisely chart results. It’s a more reliable and accurate way to proceed. Otherwise, the option is to load varying charges at home and then see what happens at the range. That’s okay, but not nearly as good as on-the-spot experiements. Plus, you won’t have left over partial boxes of poor-performing rounds. It’s more economical and way on more efficient.

The preparation part, and this is what you might spend the remaining cold month or two working on, is, first, to get the tooling ready and, second, and most important, to start making notes on your powder meter.

Important: To be able to work up at the range, it’s mandatory that you’re using a meter that has incremental adjustment. Either a “click”-type “Culver”-style insert or, at minimum, a micrometer-style metering arm. You’ll be relying on the meter, not scales, to progress upward in propellant charges, and you absolutely have to know what the values are for each increment using the different propellants you plan to test. That is where you’ll be spending time prior to doing your homework. It’s well worth it! It can be a nightmare trying to get scales to read accurately outdoors, including the digital type.

Harrells meter mounted outdoors
I map out the incremental values of each click on my Harrell’s meter adjustment drum with the propellant I’ll be testing, and it’s really easy to step up each trial with confidence. I carry the whole kit in a large tool box.
Harrells meter close up
This is a Culver insert. It’s a huge help in following this process. It’s precise and repeatable.

Equipment List and Set-Up
When I need to do load work, I size, prep, and prime new cases and put them in a cartridge carrier (usually a 100-round box). I then pack up my little press, seating die, my meter, some cleaning gear, C-clamps, and my propellants. The press and meter and cleaning gear go in a tool box. I usually carry the propellants in a picnic-type cooler. And, very importantly, my chronograph. A notebook, some masking tape, and a sack lunch… I might be there a while.

Always (always) use new cases for load work-up.

When I get to the range, I’ll clamp-mount my press and meter to a bench, get out all the rest, and set up the chronograph. Take a target downrange and tack it up. I test at 300 yards, unless the load is intended for shorter-range use. I initially test longer-range loads at 300. Maybe I’m lazy, but longer-range testing is a tad amount more tedious. I’ll come back for that after I have a contender or two.

Working Up The Load:
The reason it’s a “work-up” is clear enough: we’re almost always looking to get the highest velocity we can, safely. High velocity, or higher velocity, is usually all-good. Shorter flight time means less bullet drift and drop, and a harder hit.

So working up means increasing propellant charge until we’re happy: happy with the speed and also that the cases will still hold water. (And more about that next time…)

blown primer
Keep track of the cases in the order they were fired. This helps later on when the effects can be measured. This little outing here, though, didn’t require a gage to cipher: a tad amount hot on that last little go around (last case bottom row on the right). Thing is, I didn’t load a whole boxfull of those chamber bombs to take with me, and that’s the beauty of loading right at the range.

Very important: it is vitally necessary to have established a goal, a stopping point, prior to testing. That is one of the functions of published data. That goal is bound to be velocity, not charge weight. And that, right there, is why you’re working up at the range: you want to get “advertised” velocity and need to find the charge weight that produces it.

I work up 0.20 grains at a time. Sometimes it’s more if I’m reading an unuseably low velocity on the initial trial. Since my meter has a “Culver”-style insert, which I trust completely, I reference its number of clicks in my notes rather than the grain-weights (a Culver works like a sight knob, and reads in the number of clicks, not the weight itself). I check the weights when I get back, and I do that by clicking to the settings I found delivered, and then weighing the resultant charges. Otherwise, just throw a charge into a case and cap it with masking tape (clearly labeled).

It’s not necessary to fire many rounds per increment. “Mathematically” 3-5 rounds is a stable enough base to reckon the performance of one step. Of course, I’ll be shooting more successive proofs-per-trial once I get it close. Some folks, and especially competitive shooters, wear out a barrel testing loads. That’s not necessary.

Here are 3 things I’ve found over the years to better ensure reliable results. Learned, of course, the hard way.

1. Limit testing to no more than one variable. I test one propellant at a time, per trip. If you want to test more than one on one day, bring the bore cleaning kit and use it between propellant changes. Results are corrupt if you’re “mixing” residues. Same goes for bullets. Otherwise, though, don’t clean the barrel during the test. I fire my most important rounds after 60+ rounds have gone through it, so I want a realistic evaluation of accuracy and velocity.

2. Replace the cases back into the container in the order they were fired. This allows for accurate post-test measurements. Use masking tape and staggered rows to label and identify the steps. I use 100-round ammo boxes because they leave enough space for the tape strips.

3. Go up 0.20 grains but come off 0.50 grains! If a load EVER shows a pressure sign, even just one round, come off 0.50 grains, not 0.10 or 0.20. Believe me on this one…

Check out chronographs HERE
Take a look at suitable meters HERE

The information in this article is from Glen’s newest book, Top-Grade Ammo, available HERE at Midsouth. Also check HERE for more information about this and other publications from Zediker Publishing.

RELOADERS CORNER: The Priming Process

Facebooktwittergoogle_pluspinterestyoutube

Priming is the final case preparation step, and it’s one of the most important. Read how to do it right.

Glen Zediker

There are pretty much three different style tools used to seat primers.

The first, and way on most common, is the priming “arm” attached to most every single-stage press. This works, but it’s the least best way to do it. There’s too much leverage at hand, and that makes it hard to feel the seating process to its best conclusion.

Take a close look at how a primer is constructed: there’s a cylindrical cup, inside the cup is the incendiary compound, and then there’s the anvil (that’s the little part that extends below the cup rim; it’s like a flat spring with three feet).

rifle primer close up
Take a close look at a primer. The anvil is the tripod-shaped thin metal piece protruding above the bottom of the primer cup. Getting the primer sitting fully flush on the bottom of the primer pocket in the case, without crunching it too much, requires some keen feel for the progress of primer seating, and that’s where the stand-alone tools come in to help. I strongly suggest using one.

Ideally, a primer will seat flush against the bottom of the primer pocket, with compression, equally of course, against the anvil. Also ideally, there should be some resistance in seating the primer (if there’s not then the pocket has expanded an amount to cause concern, and a rethink on the suitability of reusing this case, and its brothers and sisters).

If it has to be a choice, even though it doesn’t have to be, it’s better to have “too much” seating than not enough. The primer cannot (cannot) be left too “high.” That’s with reference to the plane of the case head. There are both safety and performance concerns if it is. First, if the primer is not seated snugly to the bottom of its pocket, then the firing pin will finish the job. No doubt, there will be variations in bullet velocities if this happens because it affects ignition timing.

Each and every loaded round you ever create needs to be checked for this. Every one. Get in the habit of running your finger across the case bottom and feeling a little dip-down where the primer is. Look also. Rounds loaded on a progressive machine are susceptible to high primers. The reason is no fault of the machine but rather because the feel or feedback is that much less sensitive than even when using a press-mounted priming arm. If there are a half-dozen other stations on a tool head in operation at once, then the one doing the priming is that much more obscured from feel. And also because we’re not usually able or willing to inspect each finished round as it emerges from the rotating shell plate. But do check afterwards as you’re filing the loaded rounds away into cartridge boxes. Much more to be said ahead on this topic next edition.

correctly seated primer
Check each and every (every last one always) primer you seat to make sure it’s below flush with the case head.

The better priming tools have less leverage. That is so we can feel the progress of that relatively very small span of depth between start and finish. There is also a balance between precision and speed in tool choices, as there so often is. Also, so often, my recommendation is one that hits the best balance.

The press-mounted primer arm styles exhibit variations from maker to maker, but they’re all about the same in function. What matters most in using a press seater is going slowly and double-checking each and every result. Again, it’s the lack of feel for the progression of the primer going into the pocket that’s the issue.

press priming arm
Here’s the most common means for seating primers: the attached arm assembly on most single-stage presses. It’s tough to really feel the primer seat correctly because there’s a honking lot of leverage at work.

The best way to seat primers, or I should say the means that gives the best results, are the “hand” tools. They are also a little (okay, a lot) tedious to use, and, for me at least, aren’t kind to my increasingly ailing joints after priming a large number of cases. Those types that have a reservoir/feeding apparatus are less tedious, but still literally a pain. The reason these type tools give the best results is that they have poor leverage. The first few times you seat with one, you’ll be amazed at just how much pressure you need to apply to fully seat a primer.

LEE hand priming tool
Here’s a “hand” tool. This one from LEE works plenty well, despite its low cost. There are others similar from most major makers. The whole point to these designs is absence of leverage. Check it out HERE at Midsouthl

The best choice, in my book, are the benchtop stand-alone priming stations. They are faster than hand tools, and can be had with more or less leverage engineered into them. I like the one shown nearby the best because its feeding is reliable and its feel is more than good enough to do a “perfect” primer seat. It’s the best balance I’ve found between speed and precision.

Forster Co-Ax priming tool
Here’s a Forster Co-Ax bench-mounted tool. It’s a favorite. It provides relatively low leverage for better feel for the progression of primer seating.

Forster Co-Ax priming tool

Get a good primer “flip” tray for use in filling the feeding magazine tubes associated with some systems. Make double-damn sure each primer is fed right side up (or down, depending on your perspective). A common cause of unintentional detonation is attempting to overfill a stuffed feeding tube magazine, so count and watch your progress.

RCBS APS
Another good one is available from RCBS, the APS. Check it out HERE at Midsouth.

It’s okay to touch primers, by the way. Rumors abound that touching them with bare fingers will “contaminate” the compound and create misfires. Not true. All the primers I’ve ever used, and all those anyone else is likely to encounter, are treated to a sealant. Now, a drop of oil can penetrate the compound and render it intert, but not a fingerprint.

The priming process, step-by-step is almost too simple to diagram. Place a primer anvil-side-up in the device housing apparatus, position a case, push the primer in place. It’s learning feel of the whole thing that takes some effort. As mentioned, using a tool with poor leverage, you might be surprised how much effort it takes to fully seat a primer. On anything with an overage of leverage, there’s little to no sensation of primer movement into the pocket. It just stops.

TWO DONT’S:
Don’t attempt to seat a high primer more deeply on a finished round. The pressure needed to overcome the inertia to re-initiate movement may be enough to detonate it.

Don’t punch out a live primer! That can result in an impressive fright. To kill a primer, squirt or spray a little light oil into its open end. That renders the compound inert.

ONE (BIG) DO:
Keep the priming tool cup clean. That’s the little piece that the primer sits down into. Any little shard of brass can become a firing pin! It’s happened!

See what’s available here at Midsouth HERE

The information in this article is from Glen’s newest book, Top-Grade Ammo, available HERE at Midsouth. Also check HERE for more information about this and other publications from Zediker Publishing.

RELOADERS CORNER: 4 Steps To Improve Standard Die Performance

Facebooktwittergoogle_pluspinterestyoutube

It’s easily possible to improve the alignment and concentricity of a die set, and the result is getting closer to perfection in your ammo. Here’s how…

Glen Zediker

Last time I wrote about some problems some dies can have. A couple of those things mentioned had a thing or two to do with preparation and setup, and I said then that “next time” I’d address a few ways to improve the results from the dies you already have. So here it is, sizing die first:

Many of the parts that make up a die, including the die body itself, have threaded couplings to allow for adjustment. Well, threads have gaps and that means there’s some amount of free movement afoot, or “afloat” more correctly. If there were no gaps between threaded surfaces then there would be no threading possible. To see it, loosen a locking or jam nut from a die part, the seating die or decapping stem for instance, and wiggle the part. It wiggles… Taking steps to, at the same time, take out that play and improve parts alignment pays off.

ONE: Let the shellholder float. One of the easiest mods to make to improve all die ops is to remove the apparatus that secures the shellholder into the press ram. It’s usually a wire spring clip. Pliers get it gone. Now the shellholder is free to slip in and out, mostly out, of its slot in the press ram, and an appropriately-sized O-ring banded around the slot area keeps it secure. Head to a real hardware store and find one easy enough. This mod has done two things: one is that the spring clip usually cocks the shellholder so it’s not sitting flat and flush with the ram top, which means neither is the case it’s holding, so now it is; and, two, there is now a self-centering action since the shellholder is free to move a tad. Always keep in mind that we’re dealing with small “tads” (0.001s of inches) and even though it might not be visibly noticeable, this floating setup will result in better alignment.

shellholder clip
Here’s an easy trick that will, not may, improve alignment in die ops. The ultimate result from all these steps is a more concentric round of ammunition, and most seem to think that’s worthwhile… It is.

TWO: Flatten the die lock ring. The next little help is to get the die body and press ram as closely aligned as we can. There’s a lot of gap resultant from the helix of 14-pitch threads. After adjusting the die body downward to produce the amount of case shoulder set-back you want, run a case fully into the die and, holding pressure (lightly, not forcibly) down against the press handle, secure the locking ring. This will ensure that the die is sitting “flat” atop the press. Then ONLY install and remove the die using the locking ring itself! Never the die body. By the way, and this actually is important: I don’t like lock rings that secure via a set screw; I prefer those that offer a clamping-style effect. The little set screw will lever against the angled threads on the die body and that, alone, can tilt the lock ring.

handling die by lockring
Once you get the dies secured as outlined here, handle them ONLY by their lock rings. That ensures all the careful prep stays intact. It also means no change of altering the die height, an asset toward maintaining correct case shoulder set back and also consistent bullet seating depths.

If you’re using a standard-form full-length sizing die, it will have an expander ball or sizing button (either term applies the same, just varies with who’s literature you’re reading). This part is mounted to the decapping stem and functions to open up the inside case neck after the case neck has been outside-sized by the die interior area. Depending on the difference in diameters between the newly-sized case neck inside diameter and the sizing button diameter, that’s more or less stress and friction the neck endures.

clamp-style lock rings
I use clamping-style die body lock rings, like these from Forster. Those with a set screw can tilt the lock ring when the screw tightens in against the angled threads.

I’ve talked more than a few times about the value of polishing the expander to reduce friction, but you still need then to make sure it’s sitting dead center within the die. So…

THREE: Align the expander ball. There’s a little bit of “feel” involved in this step, but it’s not hard to develop. The idea is to tighten the locking screw that secures the decapping stem against movement while the expander ball is captive in the sized case neck. After adjusting stem height (and, by the way, noticing the relatively huge amount of free movement the stem has) run a case up fully into the die and then retract it until you feel the expander engage within the case neck. Stop there. Now apply a little pressure against the press handle going the other direction (as if running the case back up) as you tighten the lock ring on the expander stem. That just set the expander in the center. If you have the tooling to determine this, select a case that represents your better examples of case neck wall thickness consistency for ultimate results.

 

expander ball adjustment
When it’s possible, and it usually is, secure locks for the pieces-parts when they’re doing their jobs. For instance, tightening the lock on a decapping stem when the expander is holding inside the case neck helps bring the stem into centered alignment, and the expander along with it.

Moving to the “other” die, the seater, the first step is the same as for the sizing die: flatten its seat atop the press, and that’s done pretty much in the same as for the sizing die. Instead of running a case into the die, though, I set an adequate number of flat washers atop the shellholder to bear some pressure against the die bottom. Then…

FOUR: Center the seater stem. Just like with the decapping stem, there’s thread play in the seating stem. Move the stem more toward an aligned center by simply securing its lock nut when there’s a bullet bearing up against the seating plug. As said, select a case with consistent neck walls to get best results. Now. The only foible with this is when you change seating depths by threading the stem up or down. It’s easy enough to repeat this op-step, but remember to do it. The BEST defense against alignment issues is purchase and use of a “competition”- or “benchrest”-style seating die. I’m talking about those having a spring-loaded sleeve that accepts the case fully before being run up to engage the seating plug. But, those still need to have their seating plug centered following the same sort of process used in these other “tricks”: snug the lock over a little pressure. That only has to be done once, though, for this die type.

The information in this article is from Glen’s newest book, Top-Grade Ammo, available HERE at Midsouth. Also check HERE for more information about this and other publications from Zediker Publishing.

Reloaders Corner: Case Trimming: finishing the job

Facebooktwittergoogle_pluspinterestyoutube

So you have a sack full of trimmed cases. Now what? Here’s what! A few tips on final preparation that may even promote better accuracy. Keep reading…


Glen Zediker


The most basic and necessary tool or tools we’ll need to get the freshly-trimmed case into shape to take on a new bullet is an “outside” and “inside” chamerfing appliance. These are most popularly housed in one hand-held tool: one end does the outside and the other does the inside. Of course (of course) there are options, and some are right dandy.

LE Wilson chamfer tool
Here’s a basic and common LE Wilson inside/outside chamfering too. One end does the outside, the other does the inside. Shown is a 45-degree tool.

After trimming the case mouths will be square, flat, and appear wider-walled than before. That’s normal.

There will usually be a little edge-ring of brass on the exterior surface of the case neck, and that’s the reason for the wider appearance. That’s easily remedied. It takes only a light skiff using the “outside” function of the tool.

trimming burr
That little ring of brass around the top outside edge of the case neck: just get it gone. Doesn’t require a cut, just a skiff with an outside deburring tool.

Don’t cut into the outside, just remove the ring. No bevel is necessary; that only thins the case mouth. If the ring is left standing, the case might not want to feed, and then there will be little shards of brass here and there.

Next, the inside. The inside edge of the case mouth needs to be broken and also beveled to more easily accept a bullet. Now we’ve got options in depth of the bevel and angle of the bevel.

The long-time “standard” is a 45-degree chamfer. That functions okay to allow most bullets to sit unsupported in the case neck prior to seating. I believe, and I’m not nearly alone, that a steeper angle is better. For anyone loading bullets that are of a longer, “spikier” form, I strongly recommend something closer to 30 degrees, or less. These are often called “VLD” cutters or chamfer tools, and that is because these tools followed the “low-drag” style bullets that, among other attributes, featured relatively longer, more steeply angled boat-tails. They also have relatively thinner jackets (“J4”). Essentially, a 45-degree pathway and the geometry on the bullet didn’t mate up.

Lyman VLD chamfer tool
Here’s a Lyman “VLD” chamfer tool. It’s got a 22-degree angle. I’ve used other brands that were 19 and 20, and I honestly don’t know that a couple degrees makes much difference. However! There’s a world of difference between this and a 45-degree tool.

The result of a greater angle mismatch is that the bullet gets a pretty hard start into the case neck, and it can also get a crooked start, and that’s because it’s not sitting “into” the neck very far. It’s in a precarious position and easily tilted. These long bullets create what amounts to more leverage in less-than-perfect case necks, which is going to be the most of our case necks unless we’re neck turning. (It’s also why I’m a big believer in a bullet-seating stem that engages farther down the bullet nosecone; this also helps reduce the angular deflection in seating.) I’ve seated and then pulled bullets from cases with 45- and 20-degree chamfers, for instance, and those from the shallower angle show noticeably less scuffing. (Plus, many of the custom-made low-drags feature a “pressure ring,” which is a tiny elevated ring right at the boat-tail/shank junction, usually about 0.0005 diameter, which helps obturation. That ring can get deformed by a 45-degree chamfer.)

It’s not the depth into the case neck cylinder that improves the transition into the case neck, so a “bigger” cut with a 45 won’t do a thing. A steeper cutter is going to make a deeper extension into the case neck simply because the angle is steeper.

Cutting the inside, do not go for a knife edge! For a yardstick, I suggest going about halfway on a 45-degree cut and 2/3 on a VLD-style chamfer tool. By that I mean that the appearance of the wall thickness at the case mouth is roughly half after chamfering that it was before.

Forster 3-way trimming head
There are also “all-in-one” cutter/chamfer/deburr heads for some case trimmers. These are one bugger to set up, but they work well and save a ton of time and extra steps, and since it’s incorporated into the length-trimming operation, the chamfer consistency will be spot-on. Trick is finding one that cuts a shallower angle on the inside… If not, it’s going to produce better results overall to do this operation separately.

It is important, at least in logical thought, to have the same chamfer depth on each case to ensure perfectly consistent engagement with the bullet shank. Honestly, I don’t know if that shows up on a target, but it’s easily attained using either an LE Wilson or Forster case trimming base, as well as some others, with the addition of a chamfering tool in the apparatus to replace the length trim cutter. It’s an extra step in retooling and adjustment, but then if the cases are all the same length and the stops are set, each case mouth will have an identical chamfer.

LE Wilson neck reamer
Here’s a trick and half for seating flat-base bullets. These are difficult to get started straight since there’s no boat-tail to ease transition into the case neck. I use an LE Wilson inside neck reamer set to engage a feature built into that tool. LE Wilson added a short tapered area that can be run into a sized case neck, about 1/16 inch, that machines something close to a “shelf” that provides a nest for the flat bullet base. There’s a noticeable improvement in runout on the flat-base bullets I have seated with and without this cut. [Note: This is the “standard” inside neck reamer intended to remove excessive thickness in the case neck cylinder on fired cases, not sized cases; the feature just described is an accessory benefit and, again, is engineered for use on sized case necks.]

The preceding is a specially-adapted excerpt from Glen Zediker’s newest book Top-Grade Ammo. Available right’chere at Midsouth Shooters Supply. Visit ZedikerPublishing.com for more information on the book itself, as well as others.

RELOADERS CORNER: Case Trimming Tools

Facebooktwittergoogle_pluspinterestyoutube

Choosing the right case trimmer has to do with the quest for precision, the need for speed, and the budget bottom line… Here’s how to make the fewest compromises.


Glen Zediker


Last time we talked about the needs and reasons for trimming bottleneck rifle cartridges. It’s a necessary step in the case preparation process, at least at some point or three before the brass hits the trash can bottom.

MANUAL
Case trimmers are available from most all industry tooling manufacturers. Most replicate a miniature lathe: the case is held in place at its back end, usually by a collet-type appliance, and suspended from its front end via a pilot, surrounded by a cutting head, that fits inside the case neck. They have a crank-handle.

case trimmer pilot
Here’s the source of imprecision in most trimmers. The case is held securely only at its base. The cutter pilot has to be smaller than the case neck, and can’t have a close fit. There’s a lot of wiggle room and that translates to non-square case mouths and even length inconsistencies.

This essential architectural arrangement carries potential contributors to imprecision. The case body is not supported, only the case head is held firmly in place. The pilot goes in the case neck and, so it can go into the case neck, has some gap. Inconsistencies in case neck wall thickness and the inevitable case body warpage, plus plain old flex, can result in what some, me included, might call wobble.

If the case isn’t being rotated along a flat axis, then the cutter isn’t going to engage the case mouth squarely.

I think a better arrangement is taking the case head out of the equation and focusing on supporting the case body. To this end, I’m not bashful about saying something good about something I use, especially not when post-recommendation feedback continues to thank me profusely. Put it this way: if you asked me face-to-face which bench-top case trimmer to get, I’d say “LE Wilson.” Just like that. Check it out at Midsouth Shooters Supply HERE.

LE Wilson Case Trimmer
Here’s an LE Wilson. I bought my first one in 1985 and I’m still using it (just needs a new cutter head every so often). This tool produces square, precisely trimmed cases, and it does so quickly. This one shown is the latest-greatest version. The addition of the micrometer makes it the zoot-capri benchtop trimmer. That’s a real asset to precision for some operations, like case mouth chamfering, that you can use your LE Wilson for. Recommended.
LE Wilson Trimmer
The cases tap in and then tap out. There’s enough taper in the sleeve to secure the case against movement. It’s way on faster than locking and unlocking a collet. Plus, one LE Wilson base serves for virtually all cartridges, just change the sleeves.

I like this design because it uses a sleeve that holds the case and sits atop rails on the trimmer base. The case can’t move, and it doesn’t move. The cutter, which is the only thing that moves, engages the case mouth. All the alignment is in the parts of the trimmer itself; the case is taken completely out of the equation.

Forster Trimmer accessories
Another trimmer I like, and I do use, is the Forster. It’s what I recommend for those who want to get more of a “multi-purpose tool” out of their base unit. There’s a wide ranging array of add-ons, or add-ins, that make it serve to work over primer pockets, turn case necks, ream case necks, and even hollow-point bullets. I’m not exactly sure why, but my Forster does a superior job compared to others I’ve tried built along the same lines. The Brown & Sharpe collet is touted as providing higher precision than others out there.
case trimming accessories
There are a myriad of accessory add-ins for a Forster trimmer: shown is a neck reamer, outside case neck turning parts, centering pilot for primer pocket tools, primer pocket cleaner, crimp remover, power-drill adaptor, and the list goes on beyond these. Versatile!

POWER
Yeah boy. If you’re up for it, a truly specialty power case trimmer is the bomb.com. I really don’t think that adding power to a “lathe-type” trimmer is all that impressive or worthwhile. It helps ease the effort but it’s not necessarily speeding up the process.

There are two power trimmers that are more than impressive. One is a Gracey Match-Prep and the other is the Giraud. Both are expensive ($300+) but after processing a sack full of Lake City Match brass in a scant few minutes, the cost might get forgotten. Might. It really depends on the volume you do. I can tell you that, much to the contrary using a conventional tool, case trimming is the single fastest step in my case prep routine using a Gracey. I have not used a Giraud but have it on very good advice that it’s as good as all.

Gracey trimmer
Here’s a Gracey. It’s a powerful machine that’s a tad-amount intimidating the first time you use one. But just push the case in and bring it out. That’s it. It’s extremely fast and, according to my notebook entries, produces perfectly precise lengths as long as all the cases are full-length resized (the case stops on its shoulder in the holder). (Shown separately.)

Both work pretty much like giant overly-powerful electric pencil sharpeners. Push the case in and the spinning cutting head zips it flat in a heartbeat. Case length is determined by cartridge case headspace, which is to say that the case stops within the trimmer holder on the case shoulder. Clearly: trim only full-length sized cases to get consistent lengths. If the case shoulders haven’t been set back or at least all set the same, lengths will vary.

Take a look-see: Gracey, Giraud

Gracey holders work off the case shoulder, so all the shoulders have to be the same for best accuracy.
Gracey holders work off the case shoulder, so all the shoulders have to be the same for best accuracy.

Click here to see all the Midsouth Shooters Supply case trimming options.


Next time we’ll look at tools used to treat the trimmed case necks and finish this task in fine style.


The preceding is a specially-adapted excerpt from Glen Zediker’s newest book Top-Grade Ammo. Available right’chere at Midsouth Shooters Supply. Visit ZedikerPublishing.com for more information on the book itself, as well as others.

RELOADERS CORNER: Case Trimming

Facebooktwittergoogle_pluspinterestyoutube

Trimming bottleneck cartridges is a necessary chore, and here’s how to make it easier, and better…


rifle case trimmer
Case trimming is a needed step in the case-preparation process, and needs vary with the rifle type, and other factors. Don’t get obsessed with it, but don’t neglect it either. Not all case trimmers are equal. We’ll talk more about some I like next time, and I’ll tell you why.

At some point, now or later, bottleneck cartridges need to be trimmed. The reason is because brass flows in firing. After one or more firings and reloadings, a case will measure longer than it was when new. That extra length can only come off of the case mouth, and that’s why we trim cases. The case neck itself isn’t the main culprit in the growth, it’s just where we can address it. The most flow comes from lower down on the case.

The reason I said “now or later” is because the amount of lengthening varies from firearm to firearm and, generally, there’s usually a sooner need for trimming on a semi-auto than there will be on a bolt-action. There are two reasons for this: one is that the semi-auto will tend to expand a case more (and we’ve talked though a few reasons for that in previous articles). Another is that we’re having to full-length resize cases and set the case shoulders back a little more to ensure function. That works the brass more, no doubt. The brass is stretched more, it’s expanded and contracted more.

Important: The primary reason to trim cases is so they don’t get long enough to create a safety problem. That problem is when the case neck extends to a point where it contacts beyond its given space in the rifle chamber. That can pinch in against the bullet; excessive pressure results. The leeway will vary from chamber to chamber, and there’s no defined standard; there are plug-type gages available to measure a chamber if you want to know what you have.

case trimming
The primary reason to trim is to keep overly-long cases from overrunning their space in the chamber. If the case mouth encounters the end of its allotted space, it can pinch in on the bullet, elevating pressure. Now, there’s usually a good deal of leeway before safety can be a question, but don’t push it…

From a “performance” perspective, trimming cases should mean that all the case neck cylinders are the same height. If they’re not, then varying effective levels of bullet retention result (even if the sizing is all the same, more encasement can mean slower release).

Another is that a good trimmer will square case mouths. This is an asset to better starting alignment seating bullets and is especially and measurably noticeable using flat-base bullets.

Here’s what I do: When I get a new lot of brass, I set my trimmer so it just touches the case mouth. It takes a few tries to get this right, but the idea is that I want to see at least a skiff of a cut on each case, evidence that the trimmer contacted the case mouth. These cuts won’t all be even because not all the new case mouths will be square. Measure them all and you’ll likely see length discrepancies right off the bat. I want to eliminate those. Then I leave my trimmer set right there for future use. If we’re using the same trimmer for difference cartridges, keep a dummy case near to it and use that to reset the trimmer when there’s a tooling change. It might get expensive buying a trimmer for each cartridge you load for, but it’s sheer bliss never to have to retool a trimmer!

measuring case length
A caliper is the only tool needed to measure case length. It’s not really necessary to measure each and every case each and every time. It’s a whopping lot faster to set the trimmer so it just touches the shortest case you have (revealed through the process itself in setting up the trimmer) and trim all the cases using that setting locked in place. If it’s a fired case, make sure it’s been deprimed or the measurement won’t be accurate.

Now, there’s zero harm in using a longer “trim-to” length, and that’s way more popular than my method. These lengths are stated in reloading data manuals. Keeping up with it over years, I’ve seen no difference in the rate of lengthening trimming longer or shorter; I trim “shorter” solely as a matter of consistency over the (short) life of my semi-auto cases. Also, I trim all my cases, when I trim them. I don’t measure each case. I just trim them all. That’s overall faster and more certain.

Here’s a few things to always keep in mind about case trimming. One, and the most important in my process at least, is that the only time to trim a case accurately is after that case has been resized! That’s when there’s an accurate indication of case length. Measure a fired and un-sized case against one that’s fired and then sized, and the un-sized case very likely show a shorter length. That’s only because there’s been expansion in the case neck and body. As the expanded areas are brought back into spec by a sizing die it’s along the same lines as rolling a ball of modeling clay out on a table: it gets longer as it gets smaller in diameter.

trimmed case
A freshly trimmed case isn’t ready to go, yet, and we’ll fix all that next time too.

Also, only after sizing can we know that the case neck, case shoulder area is consistent in dimension. Measure enough of them and you’ll find some cases exhibit variance. We’re talking very small numbers here, but we’re always dealing with very small numbers, so let’s get them all the same. And that’s one of the virtues of trimming cases.

Next time more about the tools.


The preceding is a specially-adapted excerpt from Glen Zediker’s newest book Top-Grade Ammo. Visit ZedikerPublishing.com for more information, and BuyZedikerBooks.com to order.

Improving Tool Alignment: 5 Ways To “Float”

Facebooktwittergoogle_pluspinterestyoutube

“If it’s not perfectly aligned, then it should float…” Here’s a few tips on improving concentricity in the handloading process.


Glen Zediker


Water seeks its own level. Moving parts seek their own centers. Trick is getting the centers to agree. When centers coincide, that’s “concentricity,” and that a prime goal in the process of creating better ammunition. Anything under pressure and moveable, such as a cartridge case being sized or a bullet being seated into a case neck, moves toward a path of least resistance. If all the tooling associated is straight, and the case hisseff is uniform, then the result is “straight.” However! That’s in a perfect world.

In reality, which is accepting existence of tolerances and misalignments, taking steps to help two conflicting centers come close together comes from providing some free-play in the apparatus. I call it “floating.” And it works, and here are a few ways to use it.

Now, free-floating can work two ways. One is to incorporate a float into the mechanism in use, and another is to create float, and then use that to center a piece prior to snugging it down.

1. Shellholder
This first one might seem a tad amount clumsy, but it’s really easy to get used to in operation. Presses with conventional shellholder arrangements use a spring clip to retain the shellholder in its slot atop the press ram. Get this clip gone! It cocks the shellholder askew.

The solution is to incorporate an o-ring to retain the shellholder in its slot. Get one at any real hardware store. Size that works is usually 7/8-inch outside diameter, 11/16 inside diameter, 3/32 thickness. The o-ring fits into the exterior channel previously occupied by the spring clip. To install a shellholder you just roll the ring down a tad, slide in the holder, and let the ring back up to block its exit out the front.

This modification lets the shellholder sit flat, as it should, and also provides some wiggle room so the case can align itself with the die opening. [Photo from Top-Grade Ammo]
This modification lets the shellholder sit flat, as it should, and also provides some wiggle room so the case can align itself with the die opening. [Photo from Top-Grade Ammo]
2. Sizing die lock ring
Speaking of wiggle room, there’s a whopping lot of it in a 7/8-14 thread set. That’s pretty coarse. Taking up the play created by thread-to-thread gaps goes a good ways toward “straight” installation of a die into a press. There are a couple of ways to help this.

One is to always (always) tighten a die locking collar ring when there is a case inside the die, and the ram is fully extended upward (handle all the way down). This bit of pressure helps to bring the die into straight alignment. Problem is that it also makes the daggone die hard to remove. Just get stern with it. After initial removal, subsequent re-fittings are easy. I use a “strap wrench” (plumbing supply and real auto parts stores have one for you) if it’s stubborn to turn loose after being tightened initally. Pliers result in cosmetic, but not real, damage. Lock rings with wrench-flats are dandy.

Always put an index mark from die lock ring to die body to press top. That’s a simple way to verify return to “zero” when a die is installed back into your press. And ALWAYS install and remove the die holding ONLY the locking ring! Never-ever the die body. Any teeny body rotation within the locking ring, which is easily undetectable, requires repeating the process of die adjustment.
Always put an index mark from die lock ring to die body to press top. That’s a simple way to verify return to “zero” when a die is installed back into your press. And ALWAYS install and remove the die holding ONLY the locking ring! Never-ever the die body. Any teeny body rotation within the locking ring, which is easily undetectable, requires repeating the process of die adjustment.
I prefer clamping lock rings, like these from Forster. Those with a set screw can cock when the screw tightens in against the angled threads.
I prefer clamping lock rings, like these from Forster. Those with a set screw can cock when the screw tightens in against the angled threads.

For these tricks, choose a case that represents your best: get one with the most consistent neck wall thickness.


3. Expander/decapping assembly
There’s some “feel” involved in this one, but it is worthwhile. To get the expander in your sizing die sitting on center, run up a case fully and then slowly withdraw it until you feel the expander lodge inside the case neck. Then put a little pressure down on the handle, in the direction of raising the ram, while you tighten the locking apparatus.

When it’s possible, and it almost always is, secure the pieces-parts when they’re doing their jobs. For instance, tightening the locking rings on a decapping stem when the expander is holding inside the case neck helps bring the stem into straight alignment, and the expander along with it.
When it’s possible, and it almost always is, secure the pieces-parts when they’re doing their jobs. For instance, tightening the locking rings on a decapping stem when the expander is holding inside the case neck helps bring the stem into straight alignment, and the expander along with it.

4. Lock-ring o-rings
Here’s one I suggest but don’t usually follow… Lemmesplain: It works but I prefer these other means because they’re more “secure.” However! Installing an o-ring up under the die body locking ring (sizers and seaters) provides a cushioned flexibility that provides for takeup in the amount and “direction” needed when a case is run up into a die. O-ring size is 7/8-inch inside diameter and a thickness of 1/8-inch.

O-ring trick: the flexible ring allows for some “wiggle room” to help case and die centers match. Trick is reinstalling the die to hold the desired setting, and the index mark really helps. Hold only the lock ring when threading the die in and out!!
O-ring trick: the flexible ring allows for some “wiggle room” to help case and die centers match. Trick is reinstalling the die to hold the desired setting, and the index mark really helps. Hold only the lock ring when threading the die in and out!!

5. Bullet seating die stem
This one is pretty simple: tighten the lock on the stem when there’s a seated bullet run up into the die. Threads are finer on stems than on die bodies, but better is a better. This is for a conventional-style seating arrangement. Those that use a spring-loaded sleeve arrangement, like a Redding Competition Seater, are good to go as are.


The preceding is a specially-adapted excerpt from the book Top-Grade Ammo just released by Zediker Publishing.

Load Testing Insight: 5 “Rules” for Load Work-Up

Facebooktwittergoogle_pluspinterestyoutube

Don’t waste time and money collecting half-boxes of “loser loads.” Here’s how to start and finish load work-up in one day.


Glen Zediker


Last time I talked a little about keeping your ammo pressure-safe, under a range of conditions. Quite a bit of that dealt with observations made during load work-up. So this time I’d like to talk more about the work-up process I use.

The reason for the term “work-up a load” is pretty clear: we’re almost always looking to get the highest velocity we can, safely. High velocity, or, more clear, higher velocity, is usually all good. Shorter time of bullet flight to the target means less drop and drift, and a harder impact.

So working up means increasing propellant charge incrementally until we’re happy. Happy with the velocity or happy that the cases are still able to hold water. Ha. As said last time, it’s vitally and critically important to have a stopping place, a goal to be reached, prior to testing.

I also mentioned an “incremental” load work-up method that I have followed for many years, and it’s served me very well. I do all my testing and work-ups at the range. I load right then and there. I take boxes of sized and primed cases, and my Harrell’s powder meter, and a small press that I c-clamp to a bench. The press, of course contains my seating die. And the most important pieces of gear are a notebook and a chronograph.

load at the range
You don’t have to invest a fortune to take your handloading show on the road. Some c-clamps and one of these little Lee Reloader presses is all you need! And a good powder meter. One with a clamp is handiest, or just mount it to a piece of wood and clamp that down (even a pickup tailgate works just fine).

Before the trip, I have taken the preparation time, done the homework, to know exactly how much “one click” is worth on my meter. It varies with the propellant, but by weighing several examples of each click-stop variation (done over at least 4 stops) I can accurately increase the charge for each test a known amount.

reloading at the range
I map out the incremental values of each click on my Harrell’s meter adjustment drum with the propellant I’ll be testing, and it’s really easy to step up each trial with confidence. I carry the whole kit in a large tackle-type box.

I work up 0.20 grains at a time. Sometimes it’s more if I’m reading a low velocity initially. Since I have a meter with a “Culver” insert, which I trust completely, I actually reference the number of clicks in my notes rather than the weights. I check after the weights when I get back home, and I do that by counting to the setting and weighing the charge. It’s easy enough also to throw a charge into a case and seal it over with masking tape.

I started loading at the range because I got tired of bringing home partial batches of loser loads. And, you guessed it, the partial boxes usually contained recipes that were too hot. The only way to salvage those is to pull the bullets. Tedious. Or they were too low, of course, and fit only for busting up dirt clods. Plus, I’m able to test different charges in the same conditions. It’s a small investment that’s a huge time-saver.

During my work-up, I fire 3 rounds per increment. As it gets closer to done, I increase that to 5. Final testing is done with 1 20-round group. Does 3-round volleys seem inadequate? It’s not if there’s confidence that the rounds are being well-directed and speed is being monitored. If I’m seeing more than 10-12 fps velocity spreads over 3 rounds, I’m not going to continue with that propellant.

Here are a few things I’ve found over the years to better ensure reliable results. Learned, of course, the hard way.

  1. Limit testing to no more than one variable. I test one propellant at a time, per trip. If you want to test more than one on one day, bring the bore cleaning kit and use it between propellant changes. Results are corrupt if you’re “mixing” residues. Same goes for bullets. Otherwise, though, don’t clean the barrel during the test. Don’t know about you, but I fire my most important rounds after 60+ rounds have gone through it, so I want a realistic evaluation of accuracy (and zero).
  1. Replace the cases back into the container in the order they were fired. This allows for accurate post-testing measurements. Use masking tape and staggered rows to identify the steps. I use 100-round ammo boxes because they have enough room to delineate the progress.

    ammo pressure
    Keep track of the cases in the order they were fired. This helps later on back in the shop when the effects can be measured. This little outing here, though, didn’t require a gage to cipher: a tad amount hot on that last little go around (last case bottom row on the right). Thing is, I didn’t load a whole boxful of those chamber bombs to take with me, and that’s the beauty of loading right at the range.
  1. Use the same target for the entire session. (Put pasters over the previous holes if you want, but don’t change paper.) This helps determine vertical consistency as you work up (when you’ve found a propellant that shows consistency over a 3-4 increment range, that’s better than good).
  1. Exploit potentials. If you take the lead to assemble a “portable” loading kit, the possibilities for other tests are wide open. Try some seating depth experiments, for instance. Such requires the use of a “micrometer” style die that has indexable and incremental settings.
  1. Go up 0.20 grains but come off 0.50 grains! Said last time but important enough to say again here. If a load EVER shows a pressure sign, even just one round, come off 0.50 grains, not 0.10 or 0.20. Believe me on this one…

Last: Keep the propellant out of the sun! I transport it in a cooler.

shooting chrony
Chronograph each round you fire. It doesn’t have to cost a fortune to get an accurate chronograph. This one is inexpensive and, my tests shooting over it and my very expensive “other” brand chronograph (literally one cradled in the other) showed zero difference in accuracy. The more expensive chronographs mostly offer more functions. The muzzle-mounted chronos are fine and dandy too.

The preceding was a specially adapted excerpt from the new book, Top-Grade Ammo by Glen Zediker. Check it out at ZedikerPublishing.com or BuyZedikerBooks.com